
GSS Version 0.37

User’s Guide

Gong Ding
University of Science and Technology of China

Email: gdiso@ustc.edu

Sep 5, 2005



Contents

1 Physical Description 1
1.1 The governing equation 1

1.1.1 The Hydrodynamic model 1
1.1.2 Reduce HDM to DDM 2

1.2 Recombination and Generation Rate 3
1.3 Mobility Model 4

2 Numerical Method 5
2.1 The Numerical Solution of DDM equations 5
2.2 The Numerical Solution of HDM equations 5
2.3 Boundary Condition 5

3 Mesh Generation 6
3.1 The Format of Mesh File 6
3.2 Mesh Generation by SGFramework 6

3.2.1 Mesh of PN diode 7
3.2.2 Mesh of NMOS 9

3.3 Mesh Generation by Medici 11

4 Input Statement Descriptions 13
4.1 Introduction 13
4.2 Input example 13

i



Acknowledgements ii

Acknowledgements

This paper is dedicated to my girl friend daisysjp.
I should like to thank my supervisor Jianguo Wang for patient guide and project

support.
I also would like to give thanks to my fellows: Fen Han, Gang Wang, Hongfu

Xia and Yue Wang for the endless discussions on CFD, FDTD, girl, money and the
meaning of life.



Chapter 1

Physical Description

1.1 The governing equation

1.1.1 The Hydrodynamic model

The semiclassical Boltzmann equation coupled with the Poisson equation pro-
vides a general theoretical framework for modeling electron transport in semicon-
ductor. Both Hydrodynamic equations and Drift-Diffusion can be derived from the
moments of this equation.

The Boltzmann transport equation for electrons moving with the group velocity
u and effective electron mass m∗ in an electric field E can be represented as

∂f

∂t
+ u · 5xf − e

m∗E · 5uf =
(∂f

∂t

)
coll

(1.1)

While Monte Carlo simulations provide a direct numerical solution to this equa-
tion, costly computations make their practical usage limited. The finite difference
method can also be used to solve this equation, but only for academic aim.

Assuming parabolic energy bands, the first five moments in the velocity space
are the balance equations for the flux of electron, momentum, and energy. These
equations are represented as follows:

∂n

∂t
+∇ · (nu) =

(∂n

∂t

)
coll

(1.2)

∂m∗
nnu
∂t

+∇ · (m∗
nnuu + nkTn) = −enE +

(∂m∗
nnu
∂t

)
coll

(1.3)

∂nωn

∂t
+∇ · (nωnu + nkTnu) = −enE · u−∇(−κn∇Tn) +

(∂nωn

∂t

)
coll

(1.4)

Here, n is the electron concentration, u is the translational velocity, Tn is the
temperature of electron, ωn = 2

3kTn + 1
2m∗

nu2 is the internal energy, and κn is the
rate of heat transferring.

1



Sec. 1.1. The governing equation 2

Equations 1.2, 1.3 and 1.4 are known as the Hydrodynamic Model in semicon-
ductor simulation. With the same process, the hydrodynamic equations of hole can
also be achieved.

∂p

∂t
+∇ · (pv) =

(∂p

∂t

)
coll

(1.5)

∂m∗
ppv

∂t
+∇ · (m∗

ppvv + pkTp) = epE +
(∂m∗

ppv
∂t

)
coll

(1.6)

∂pωp

∂t
+∇ · (pωpv + pkTpv) = epE · v −∇(−κp∇Tp) +

(∂pωp

∂t

)
coll

(1.7)

These equations are supplemented by the Poisson equation for the electric po-
tential φ

∇ · (ε∇φ) = −e(p− n + Nd −Na) (1.8)

The collision term in Eq 1.2 and 1.5 can be replaced with carrier recombination
and generation rate.

(∂n

∂t

)
coll

=
(∂p

∂t

)
coll

= G−R (1.9)

Follow the Baccarani and Wordeman model, the collision term in momentum
and energy equations are simplified by relaxation times, respectively.

(∂m∗
nnu
∂t

)
coll

= −m∗
nnu
τn
p

τn
p = m∗

n
µn0

e
Tn

T0
(1.10)

(∂m∗
ppv

∂t

)
coll

= −m∗
ppv
τp
p

τp
p = m∗

p
µp0
e

Tp

T0
(1.11)

(∂nωn

∂t

)
coll

= −nωn − 3
2nkT0

τn
ω

τn
ω = m∗

n

2
µn0

e
T0
Tn

+ 3
2

µn0
ev2

ns

TnT0
Tn+T0

(1.12)

(∂pωp

∂t

)
coll

= −pωp − 3
2pkT0

τp
ω

τp
ω = m∗

p

2
µp0
e

T0
Tp

+ 3
2

µp0
ev2

ps

TpT0
Tp+T0

(1.13)

Where T0 is the ambient temperature of device, µn0 and µp0 are the low field
mobility of electron and hole, vns and vps are the saturation velocity. This model
includes carrier-phonon and carrier-impurity collisions.

1.1.2 Reduce HDM to DDM

A simplification of the HDM will lead to the DDM. We take equations of electron
for example. The energy balance equation is completely removed from the set of
equations; therefore, it is no longer possible to include the electron temperature Te



Sec. 1.2. Recombination and Generation Rate 3

in the current equation. Te is simply replaced by the lattice temperature TL. We
assume that convective term ∇ · (m∗

nnuu) and the time derivative of the electron
current ∂m∗nu

∂t are small compared to the other terms. Neglecting the time derivative
of the current density is equivalent to the assumption that the electron momentum
is able to adjust itself to a change in the electric field within a very short time. This
leads to the current equation:

Jn = −enu =
e2

m∗
n

τn
p nE +

e

m∗
n

kTLτn
p ∇n (1.14)

By the same procedure, we can get the current equation for hole.

Jp =
e2

m∗
p

τp
p pE− e

m∗
p

kTLτp
p∇p (1.15)

For getting a more general form, we first define the carrier mobility rate

µn = τn
p

e

m∗
n

(1.16)

µp = τp
p

e

m∗
p

(1.17)

then we can rewrite the current equations as follows.

Jn = eµnnE + eµn(
kTL

e
)∇n (1.18)

Jp = eµppE− eµp(
kTL

e
)∇p (1.19)

Continuity equation 1.2, 1.5 and Poisson equation 1.8 are of course still valid in
the DDM.

1.2 Recombination and Generation Rate

GSS supports Shockley-Read-Hall, Auger, and direct recombination (also known
as band-to-band or optical recombination).

R = RSRH + RAuger + Rdir (1.20)

RSRH =
pn− n2

ie

τp[n + nie exp(ETRAP
kTL

)] + τn[p + nie exp(−ETRAP
kTL

)]
(1.21)

RAuger = AUGN(pn2 − nn2
ie) + AUGP(np2 − pn2

ie) (1.22)
Rdir = DIRECT(np− n2

ie) (1.23)



Sec. 1.3. Mobility Model 4

In the above, nie is the effective intrinsic concentration and τn and τp are the
concentration dependent electron and hole lifetimes.

τn =
TAUN0

1 + Ntotal/NSRHN
(1.24)

τp =
TAUP0

1 + Ntotal/NSRHP
(1.25)

The value of parameters are listed below.
Unit Silicon GaAs Ge

ETRAP eV 0 0 0
DIRECT cm3s−1 1.1e-14 7.2e-10 6.41e-14
AUGN cm6s−1 1.1e-30 1e-30 1e-30
AUGP cm6s−1 0.3e-30 1e-29 1e-30
TAUN0 s 1e-7 5e-9 1e-7
TAUP0 s 1e-7 3e-6 1e-7
NSRHN cm−3 5e16 5e17 5e16
NSRHP cm−3 5e16 5e17 5e16

Currently, GSS dose not support impact ionization. This feature may be imple-
mented in next edition.

1.3 Mobility Model

GSS uses Analytic Mobility as its low field mobility model. These are given by

µ = µmin +
µmax( TL

300 )α − µmin

1 + ( TL

300 )β(Ntotal

Nref
)γ

(1.26)

Unit Silicon:n Silicon:p GaAs:n GaAs:p
µmin cm2 · (V · s)−1 55.24 49.70 0.0 0.0
µmax cm2 · (V · s)−1 1429.23 479.37 8500.0 400.0

α − -2.3 -2.2 -1.0 -2.1
β − -3.8 -3.7 0.0 0.0
γ − 0.73 0.70 0.436 0.395

Nref cm−3 1.072e17 1.606e17 1.69e17 2.75e17

The high field mobility models are not supported by current version of GSS yet.



Chapter 2

Numerical Method

2.1 The Numerical Solution of DDM equations

Parabolical System
Finite Volume Method
The Scharfetter-Gummel Discretization
The solution of Nonlinear Systems of Algebraic Equations
Newton Iterative method
Nonlinear Solvers in PETSC

2.2 The Numerical Solution of HDM equations

Hyperbolical System
Finite Volume Method
The Roe and AUSM flux
The Operator-split method
The dual time marching method
The solution of linear Algebraic Equations
KSP Solvers in PETSC

2.3 Boundary Condition

Ohmic Contract
Schottky Contact
Insulator Contact
Insulator Interface
Neumann Boundary

5



Chapter 3

Mesh Generation

3.1 The Format of Mesh File

GSS uses CGNS(CFD General Notation System) as standard input/output file.
This file format provides the ability to store grid, solution data, material informa-
tion, boundary condition and connectivity in a single, well-defined and easy-to-use
form. More important, CGNS has been accepted and supported by most of the
commotional CFD corporations. Actually, it has become the industrial standard
among CFD society.

A CGNS file is an entity that is organized (inside the file itself) into a set of
”nodes” in a tree-like structure, in much the same way as directories are organized
in the UNIX environment. The top-most node is referred to as the ”root node”.
Each node below the root node is defined by both a name and a label, and may or
may not contain information or data. The utility ADFviewer was created to allow
users to easily view CGNS files.

The source code of CGNS can be downloaded from
http://sourceforge.net/projects/cgns. Also, two free software ADFviewer and CGN-
Splot which are very useful for showing the mesh and debugging are available there.
The detailed document of CGNS can be found in NASA at
http:// www.grc.nasa.gov/www/cgns/.

There are two ways to generate initial file in which contains grid, region infor-
mation, boundary and doping profile. One is to use SGframework and another is
converting Medici’s output file TIF to CGNS. We will explain later.

3.2 Mesh Generation by SGFramework

The most convenient way for mesh generation is employing SGFramework. The
original edition of SGFramework developed by Kevin M. Kramer dose not support
CGNS. The edition which I did some improvement can be found under \preprocess.

For installing SGFramework
1 just untar the package;

6



Sec. 3.2. Mesh Generation by SGFramework 7

2 do necessarily changes in Makefile.common;
the default installation path is /usr/local/SGframework

3 type ’make config’ to generate script;
4 type ’make’ to compile the source code;
5 if everything is ok, type ’make install’ to install the software.

For more detailed information please refer the book Semiconductor Devices A Sim-
ulation Approach written by Kevin M.Kramer and W. Nicholas G. Hitchon.

Here, I will take some examples to show how to generate the CGNS file. These
examples are stored under /SGframework/examples.

3.2.1 Mesh of PN diode

The mesh description file pn.sk is listed below. This example is under
/SGframework/examples/PN

const Wdiode = 9.0e-4;

const Ddiode = 9.0e-4;

const Wanode = 2.0e-4;

const Wcathode = 2.0e-4;

const Wspacing = 0.3e-4;

//

// Anode Cathode

// A-----B-----------------------------C---------D

// | |

// | |

// | |

// | |

// | |

// | |

// | |

// E-----F-----------------------------G---------H

point pA = (0.0e-4, 0.0e-4);

point pB = (Wanode, 0.0e-4);

point pC = (Wdiode-Wcathode, 0.0e-4);

point pD = (Wdiode, 0.0e-4);

point pE = (0.0e-4, -Ddiode);

point pF = (Wanode, -Ddiode);

point pG = (Wdiode-Wcathode, -Ddiode);

point pH = (Wdiode, -Ddiode);

edge eBC = WALL [pB, pC] (Wspacing, 0.0);

edge eEF = WALL [pE, pF] (Wspacing, 0.0);

edge eFG = WALL [pF, pG] (Wspacing, 0.0);

edge eGH = WALL [pG, pH] (Wspacing, 0.0);



Sec. 3.2. Mesh Generation by SGFramework 8

edge eAE = WALL [pA, pE] (Wspacing, 0.0);

edge eBF = [pB, pF] (Wspacing, 0.0);

edge eCG = [pC, pG] (Wspacing, 0.0);

edge eDH = WALL [pD, pH] (Wspacing, 0.0);

edge eAB = Anode [pA, pB] (Wspacing, 0.0);

edge eCD = Cathode [pC, pD] (Wspacing, 0.0);

region rAEFB = Si {eAE, eEF, eBF, eAB};

region rBFGC = Si {eBF, eFG, eCG, eBC};

region rCGHD = Si {eCG, eGH, eDH, eCD};

const Na = 1.00e+19;

const Nd = 1.00e+15;

const Rx = 2.00e-04;

const Ry = 2.50e-04;

const Ax = ln(Na/Nd)/sq(Rx);

const Ay = ln(Na/Nd)/sq(Ry);

coordinates x, y;

refine C (SignedLog, 1.0) = Nd-(Na+Nd)*ngdep(x,y,2.0*Wanode,Ax,Ay);

set minimum divisions = 0;

set maximum divisions = 1;

To generate mesh, a UNIX script is offered in file ’run’. It contains

#do syntax check

mesh pn.sk

#build initial grid

sggrid pn.xsk

#build code for mesh refinement

sgbuild ref pn_ref

#do mesh refinement

#argument -c generate CGNS file

#argument -ps generate PostScript file

pn_ref -c -ps

Because the syntax of mesh description can be found in the User’s Guide of
SGframework, I will only mention some notice for compatible with GSS.

1. GSS always considers the unit of length as centimeter. Please
follow this rule all the time.

2. The edge label will be converted to boundary label. So don’t give
label to any inner edge (eBF,eCG), or GSS will be confused.

3. If two different boundary edge share the same point (eAE,eAB),



Sec. 3.2. Mesh Generation by SGFramework 9

Figure 3.1. The mesh of PN diode

the later will overwrite the former. Put eAB after eAE when you
think point A should belongs to Anode.

4. The region label denotes the material type of this region. This is
very important to GSS. For silicon bulk, this label can only be ’Si’
or ’Silicon’. Other acceptable labels are ’GaAs’ for Gallium Arsenide,
’Ge’ for Germanium and ’SiO2’ or ’Ox’ for Oxide.

5. Positive value of refine function will be considered as Nd, negative
value will be converted to Na.

The mesh is shown on figure 3.1.

3.2.2 Mesh of NMOS

Another complex example about NMOSFET is listed here. This example can be
found under /SGframework/examples/NMOS

// mesh constants



Sec. 3.2. Mesh Generation by SGFramework 10

const WDEV = 2.0e-4; // device width | (cm) | segment 1

const DDEV = 2.0e-4; // device depth | (cm) | segment 2

const WOX = 1.4e-4; // oxide width | (cm) | segment 3

const DOX = 0.2e-6; // oxide depth | (cm) | segment 4

const WCONT = 0.2e-4; // contact width | (cm) | segment 5

const DRECT = 0.2e-4; // depth of channel | (cm) | segment 6

// |--5--| |------------3------------| |--5--|

//

// A-------------------------B -

// |\\\\\\\\\\\\\\\\\\\\\\\\\| 4

// - C-----D---E-------------------------F---G-----H -

// 6 | | | | |

// - | I-------------------------J | |

// | | |

// | | 2

// | | |

// | | |

// | | |

// K---------------------------------------------L -

//

// |----------------------1----------------------|

// define points

point pA = ((WDEV-WOX)/2, DOX), pG = (WDEV-WCONT, 0.0);

point pB = ((WDEV+WOX)/2, DOX), pH = (WDEV, 0.0);

point pC = (0.0, 0.0), pI = ((WDEV-WOX)/2, -DRECT);

point pD = (WCONT, 0.0), pJ = ((WDEV+WOX)/2, -DRECT);

point pE = ((WDEV-WOX)/2, 0.0), pK = (0.0, -DDEV);

point pF = ((WDEV+WOX)/2, 0.0), pL = (WDEV, -DDEV);

// define edges

edge eDE = WALL [pE, pD] (WOX/50, 0.2);

edge eFG = WALL [pF, pG] (WOX/50, 0.2);

edge eIJ = [pI, pJ] (WOX/40, 0.0);

edge eAE = WALL [pE, pA] (1.0e-7, 0.5);

edge eBF = WALL [pF, pB] (1.0e-7, 0.5);

edge eCK = WALL [pC, pK] (WCONT/15, 0.2);

edge eEI = [pE, pI] (WOX/50, 0.1);

edge eHL = WALL [pH, pL] (WCONT/15, 0.2);

edge eFJ = [pF, pJ] (WOX/50, 0.1);

edge eKL = SUB [pK, pL] (WDEV/8, 0.0);

edge eEF = ISGATE [pE, pF] (WOX/50, 0.0);

edge eCD = DRAIN [pC, pD] (WCONT/8, 0.0);

edge eGH = SOURCE [pG, pH] (WCONT/8, 0.0);

edge eAB = GATE [pA, pB] (WOX/50, 0.0);

//define regions



Sec. 3.3. Mesh Generation by Medici 11

region r1 = SiO2 {eAE, eEF, eBF, eAB} RECTANGLES;

region r2 = Si {eEI, eIJ, eFJ, eEF} ;

region r3 = Si {eCK, eKL, eHL, eGH, eFG, eFJ, eIJ, eEI, eDE, eCD};

// define coordinate labels

coordinates x, y;

// physical constants and properties of Si and SiO2

const T = 300.0; // operating temperature

const e = 1.602e-19; // electron charge (C)

const kb = 1.381e-23; // Boltzmann’s constant (J/K)

const e0 = 8.854e-14; // permittivity of vacuum (F/cm)

const eSi = 11.8; // dielectric constant of Si

const eSiO2 = 3.9; // dielectric constant of SiO2

// doping constants

const NS = 1.0e16; // substrate doping (cm^-3)

const NC = 1.0e19; // contact doping (cm^-3)

const WDIFF = (WDEV-WOX)/2; // diffusion width (cm)

const DDIFF = 0.25e-4; // diffusion depth (cm)

const DT = 3.0e-12; // diffusion coef. * time (cm^2)

// doping profile

refine C (SignedLog, 3.0) = (y <= 0.0) * { -NS +

(NC+NS) * nsdep(x, 2*WDIFF,DT) * nsdep(y,2*DDIFF,DT) +

(NC+NS) * nsdep(WDEV-x,2*WDIFF,DT) * nsdep(y,2*DDIFF,DT) };

// set min/max edge spacing and min/max refinement levels

// the +1.0 in the next line is important to avoid divided by a very small #

set minimum length = sqrt(e0*eSi*(kb*T/e)/e/abs(C+1.0));

set maximum length = 1.0;

set minimum divisions = 0;

set maximum divisions = 3;

In this example, oxide layer is in an septated region which has a label ’SiO2’
and it is divided into rectangles. Edge eEF is the isolator interface between Si bulk
and SiO2. Again, for define point C as Drain, the definition of edge eCD is after
eCK.

3.3 Mesh Generation by Medici

Avant! Medici c© is a powerful two dimensional semiconductor simulator. Unfor-
tunately it is a commotional software and in high price. Our institute spent about
50 000 US dollars on it.

Medici uses Technology Interchange Format (TIF) for its data file. I developed



Sec. 3.3. Mesh Generation by Medici 12

Figure 3.2. The mesh of NMOS

a small command line tool ’dumptif’ for converting it to CGNS. The tool, examples
and the introduction can be found under /preprocess/TIF.tar.gz.



Chapter 4

Input Statement Descriptions

4.1 Introduction

GSS is directed via input statements. These statements are stored in an input
file. Each input statement must be written in the same line. The max characters
in one line and the max lines in the input file don’t have any limits essentially.

Each statement has the syntax as keyword parameter=[string|number]. Key-
words and parameters are reserved words which user should not use them. String
should begin with character or underline. Character, digital, underline and dot are
allowed in string and the length of string is limited to 30 characters. Some of the
strings like file name or boundary identifier can be specified by user; but others like
solver type are fixed. The number expression supports C syntax double precision
float point number.

4.2 Input example

# common line

# All the command has the syntax: keyword parameter=string|double

# String must begin with character or underline.

# Character, digital, underline and dot are allowed in string.

# The length of string is limited to 30 characters.

# Numerical value double support c syntax float point number.

# The Unit in command file.:

# Time Unit:ps voltage Unit:V Freq Unit:THz Length Unit:cm

#======================================================================

# static command, in lower case

set MeshFile = mesh.cgns # specify cgns file which contains mesh,doping and boundary lable

set ModelFile = model.dat # specify physical model

set Carrier = pn # specify carrier type support p,n or pn

set DeviceDepth = 0.01 # device depth in Z dimension. Unit:cm

set LatticeTemp = 3e2 # specify initial temperature of device. Unit:K

#----------------------------------------------------------------------

# voltage source.

13



Sec. 4.2. Input example 14

# ID can be specified by user, limited to 32 characters, c syntax.

# reference: voltage source in spice model

vsource Type = VDC ID = GND Tdelay=0 Vconst=0

vsource Type = VDC ID = VCC Tdelay=0 Vconst=5

vsource Type = VSIN ID = Vs Tdelay=1 Vamp=0.1 Freq=1e-6

vsource Type = VEXP ID = V1 Tdelay=0 TRC=1 TFD=3 TFC=1 Vlo=0 Vhi=1

vsource Type = VPULSE ID = V2 Tdelay=0 Tr=1 Tf=1 Pw=5 Pr=10 Vlo=0 Vhi=1

#----------------------------------------------------------------------

# specify boundary condition.

# ID must accord with the boundary name in cgns file

# electrode boundary

# OhmicContract|SchottkyContract|GateContract|InsulatorContract

# they have parameters of parasite res,cap and ind unit:Om,F,H

# SchottkyContract has an extra parameter,the barrier height.

# GateContract can specify the workfunc of gate electrode.

# InsulatorContract offers a simple way for describing Si/SiO2 interface,

# the Thick of oxide must be specified,

# NeumannBoundary has heat transfer rate parameter Kapa. unit ?

# InsulatorInterface is the interface of Si/SiO2, has a fixed charge density QF,unit ?

boundary Type = InsulatorContract ID = SiSiO2 Res=0 Cap=0 Ind=0 Thick=1e-6 QF=0

boundary Type = InsulatorInterface ID = IFACE QF=0

boundary Type = GateContract ID = GATE Res=0 Cap=0 Ind=0 WorkFunction=0

boundary Type = NeumannBoundary ID = WALL Kapa=0

boundary Type = SchottkyContract ID = sgate Res=0 Cap=0 Ind=0 Vbarrier=-0.8

boundary Type = OhmicContract ID = OMANODE Res=0 Cap=0 Ind=0

boundary Type = OhmicContract ID = OMCATHODE Res=0 Cap=0 Ind=0

boundary Type = OhmicContract ID = OMSOURCE Res=0 Cap=0 Ind=0

boundary Type = OhmicContract ID = OMDRAIN Res=0 Cap=0 Ind=0

boundary Type = OhmicContract ID = OMSUB Res=0 Cap=0 Ind=0

#FloatMetalGate may support later

#===========================================================================

# drive command, specify the solving process. # keyword is in upper care

# reference: medici user’s guide

#---------------------------------------------

# METHOD Type = DDM scheme = [Newton|Gummel] &

# SNES = [LineSearchCubic|LineSearchQuadratic|LineSearchNo|TrustRegion] &

# TStep = time_number

# METHOD Type = HDM scheme = [Implicit|Explicit] FluxFunc = [AUSM|Roe] &

# Reconstruct = [FirstOrder|SecondOrder] CFL = cfl_number

#---------------------------------------------

# ATTACH Electrode = electrode_name VApp = vsource_name1 VApp = vsource_name2 ...

#---------------------------------------------

# SOLVE Type = EQUILIBRIUM

# SOLVE Type = STEADYSTATE

# SOLVE Type = DCSWEEP VScan = electrode_name IVRecord = electrode_name &

# IVFile = file_name VStart = v_number VStep = v_number VStop = v_number



Sec. 4.2. Input example 15

# SOLVE Type = TRANSIENT AUTOSAVE = time_number IVRecord = electrode_name &

# IVFile = file_name TStart = time_number TStop = time_number

#---------------------------------------------

# MODELS not supported yet

#---------------------------------------------

# IMPORT CoreFile = file_name

#---------------------------------------------

# EXTRACT CoreFile = file_name AscFile = file_name

#---------------------------------------------

# REFINE Variable = [Doping|Potential] Measure = [Linear|SignedLog] Dispersion = number

#---------------------------------------------

# PLOT Variable = Mesh Resolution=[Low|Middle|High] PSFile=file_name

# PLOT Variable =[Na|Nd|ElecDensity|HoleDensity|Potential|EFieldX|EFieldy|Temperature] &

# Resolution=[Low|Middle|High] PSFile=file_name Measure=[Linear|SignedLog] &

# AzAngle=angle_number ElAngle=angle_number Style=[Scale|Color|GrayLevel]

#===========================================================================

METHOD Type = DDM Scheme = Newton TStep=1e3 #DDM method is the default solver

PLOT Variable=Mesh

REFINE Variable=Doping Measure=SignedLog Dispersion=1 #refine by doping

SOLVE Type=EQUILIBRIUM #compute equilibrium state

REFINE Variable=Potential Measure=Linear Dispersion=0.1 #refine by potential

PLOT Variable=Mesh

SOLVE Type=EQUILIBRIUM #compute equilibrium state again

PLOT Variable=Na Resolution=Middle AzAngle=240 ElAngle=40 Style=Scale

PLOT Variable=Nd Resolution=Middle AzAngle=240 ElAngle=40 Style=Scale

PLOT Variable=ElecDensity PSFile=electron Resolution=High AzAngle=240 ElAngle=40 Style=Color

PLOT Variable=HoleDensity PSFile=hole Resolution=High AzAngle=240 ElAngle=40 Style=Color

PLOT Variable=Potential Resolution=High AzAngle=240 ElAngle=40 Style=GrayLevel

# extract mesh and solution

EXTRACT CoreFile=init.cgns

IMPORT CoreFile=init.cgns # import result

ATTACH Electrode=OMCATHODE VApp=GND # attach vsource to boundary(electrode)

# DC sweep

SOLVE Type=DCSWEEP VScan=OMANODE IVRecord=OMANODE IVFile=iv.txt VStart=0 VStep=1e-2 VStop=1

#IMPORT CoreFile=break.cgns

ATTACH Electrode=OMANODE VApp=VCC VApp=Vs

# specify HDM method

METHOD Type=HDM Scheme=Explicit FluxFunc=AUSM Reconstruct=FirstOrder CFL=0.1

SOLVE Type=TRANSIENT AUTOSAVE=1 TStart=0 TStop=10

METHOD Type=HDM Scheme=Implicit FluxFunc=AUSM Reconstruct=SecondOrder CFL=2

SOLVE Type=TRANSIENT AUTOSAVE=1 TStart=10 TStop=20


