
SGframework User’s Guide

K M Kramer
Honeywell Technology Center

3660 Technology Drive
Minneapolis, MN 55418

1997

Contents

1 The SGFramework User’s Manual 1
1.1 The Syntax and Grammar of the Equation Specification File 2

1.1.1 Comments 3
1.1.2 Numbers 3
1.1.3 Strings 4
1.1.4 Identifiers 5
1.1.5 Operators 7
1.1.6 Constants 8
1.1.7 Variables and Arrays 10
1.1.8 Functions 13
1.1.9 Constraint Equations 18
1.1.10 Procedures 21
1.1.11 Numerical Algorithm Parameters 30

1.2 The Syntax and Grammar of the Mesh Specification File 33
1.2.1 An Overview of the Mesh Specification File 33
1.2.2 Comments, Numbers, Identifiers and Constants 35
1.2.3 Coordinates 36
1.2.4 Points 36
1.2.5 Edges 37
1.2.6 Regions 37
1.2.7 Labels 38
1.2.8 Refinement Statements 38
1.2.9 Mesh Parameters 39
1.2.10 Element Refinement Criteria 40

1.3 Interfacing the Equation and the Mesh Specification Files 40
1.3.1 Importing an Irregular Mesh 41

i

ii Contents

1.3.2 Using Labels in Equation Specification Files 42
1.3.3 Mesh Connectivity Functions 43
1.3.4 Mesh Geometry Functions 44
1.3.5 Mesh Summation Functions 45
1.3.6 Precomputed Functions 47

1.4 SGFramework Executables 50
1.4.1 Build Script 50
1.4.2 Mesh Parser 52
1.4.3 Mesh Generator 54
1.4.4 Mesh Refiner 55
1.4.5 SGFramework Translator 56
1.4.6 Ordering Module 60
1.4.7 SGFramework Simulations 60
1.4.8 Extract Program 61
1.4.9 Group Program 62
1.4.10 Graphical Output 63

Chapter 1

The SGFramework User’s
Manual

The user’s manual given here provides the syntax of the mesh and equation spec-
ification files, and explains the commands needed to use them. (This manual is
not a tutorial; it is intended as a reference manual. The text contains an extensive
tutorial on the setting up and running of simulations.)

In summary, the procedure to generate and run a simulation is given below
(followed by a similar one to construct a mesh).

1. Translate the equation specification file with the SGFramework translator:
sgxlat filename.sg
2. Compile and link with the Numerical Algorithm Module:
sgbuild sim filename
3. (If necessary) order the unknown elements to reduce sparse-matrix fill:
order filename.top filename.prm
4. run the simulation:
filename
If the simulation uses an irregular mesh, you must construct it before executing

the above procedure.
1. parse the mesh specification file:
mesh filename.sk
2. construct the initial mesh:
sggrid filename.xsk
3. build the mesh refinement program:
sgbuild ref file_ref
4. run the mesh refinement program:
file_ref
(Each time SGFramework opens a window to plot the mesh, it is necessary to

close the window before the next line will be executed.) These commands all make
use of SGFramework Executables. The SGFramework Executables are invoked from
a command line. This means that Windows95 and NT users must first open an MS-
DOS prompt before giving these commands to run the SGFramework Executables.

1

2 User’s Manual

Table: Syntax of Syntax Statements

A character enclosed in single quotes represents the literal character. Hence, ‘,’
means one literally types a comma.
The asterisk character (*) means zero or more of the item or set that preceeds it.
The plus character (+) means one or more of the item or set that preceeds it.
Items enclosed by vertical lines are optional.
Items enclosed by brackets form a set. For instance, [A-Z] mean one can type either
an A, B, C, ..., or Z.
Items enclosed by braces form a group. Groups are treated as a single item.
Keywords appear in boldface type.
Italized text represents a previous defined entity.

In UNIX, a shell must be opened. The commands are explained in Section 1.4, on
SGFramework Executables. The first parts of this manual, on the other hand, are
devoted to explaining how to set up the files which are used by the SGFramework
Executables.

The text to this point is full of examples of input files. The first of these is the
‘Game of Life’ in Section ??. This gives (and explains) the commands needed to run
an existing input file (if that file does not need a mesh to be generated by SGFrame-
work). Section ?? is the appropriate point to begin learning to use SGFramework.
The examples progress through simple electrostatics problems, beginning with Sec-
tion ??. The use of irregular meshes is introduced in Section ??. Section ?? is the
appropriate place to begin learning about the mesh refinement program and the
commands required to use it. The examples in the text are all explained where
they are presented, and the easiest way to start is to read the sections which were
indicated above, from the first few chapters.

Throughout this chapter there are definitions of the syntax which is appropriate
for the various SGFramework commands and functions. The meaning of the syntax
statements is summarized in a table of ‘syntax syntax’.

This chapter is divided into four sections: The Syntax and Grammar of the
Equation Specification File 1.1, The Syntax and Grammar of the Mesh Specifi-
cation File 1.2, Interfacing the Equation and Mesh Specification Files 1.3, and
SGFramework Executables 1.4.

1.1 The Syntax and Grammar of the Equation Specification File

This section describes the syntax and grammar of equation specification files. It
is divided into twelve subsections, each of which describes a particular part of the
SGFramework language. The topics covered in this section are Comments 1.1.1,
Numbers 1.1.2, Strings 1.1.3, Identifiers 1.1.4, Operators 1.1.5, Constants 1.1.6,
Variables and Arrays 1.1.7, Functions 1.1.8, Constraint Equations 1.1.9, Proce-
dures 1.1.10, Conditional Statements 1.1.10, and Numerical Algorithm Parame-
ters 1.1.11. Some of the subsections are further divided. The Functions subsection

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 3

describes internal, user-defined, and external functions, whereas the Procedures sub-
section describes assignment statements, single-word statements, file input/output
statements, subroutine execution statements, conditional statements and looping
statements.

1.1.1 Comments

Comments may be placed anywhere in the source file and are ignored by the equation
specification file parser. Comments start with the // characters and terminate at
the end of the line. It is a recommended practice to use comments to document a
specification file. Proper use of comments will enable other users to easily determine
the purpose of the simulation. Examples of comments can be found in the examples
given in the text.

1.1.2 Numbers

Both integer and floating-point numbers are supported in equation specification
files. Integers are numbers without a fractional part. Floating-point numbers con-
tain both an integral and a fractional part.

Integers

Integers consist of an optional plus or minus sign followed by one or more digits.
The range of integer numbers is dependent upon the implementation of the host
system’s C++ compiler. At a minimum, the integer range is guaranteed to include
the numbers −32768 to 32767 inclusive. The syntax of integers is as follows.

|[+,−]|digit +where digit is the set [0-9].
The numbers 2,−5, 12536,−32768, and 23 are examples of allowed integers.

The number 40000 may be interpreted as an integer or it may be interpreted as a
floating-point number if it exceeds the C++ compiler’s integer range. It is suggested
that users adhere to the integer range of −32768 to 32767 regardless of their C++
compiler, in order to generate portable simulations which will run correctly on
multiple platforms. To avoid writing simulations where certain numbers may be
interpreted as integers on one computer and as floating-point numbers on another
computer, add a decimal point and a zero (e.g. 40000.0) to integral numbers outside
the range of −32768 to 32767. This will guarantee that these numbers are always
interpreted as floating-point numbers.

Floating-Point Numbers

Floating-point numbers consist of an optional plus or minus sign followed by one
or more digits which are optionally followed by a period and one or more digits.
Scientific (exponential) notation is supported. SGFramework implements floating-
point numbers with double precision and with a guaranteed minimum range of
−1.7 × 10−308 to 1.7 × 10308 with 15-digit precision. The syntax of floating-point
numbers is as follows.

4 User’s Manual

|[+,−]|digit +|[.] digit +|[E,e]|[+,−]|| digit +|
The numbers 1.0, −2.3, 1e1, 3.14159, −2.0e− 3, and 4.23e + 23 are examples of

floating- point numbers. Although numbers such as 5 and −10 are valid floating-
point numbers as far as syntax is concerned, they will be treated as integers, since
they are within every C++ compiler’s integer range.

Integer and Floating-Point Expressions

Mathematical expressions may be divided into two categories: integer expressions
and floating-point expressions. A mathematical expression which consists entirely of
integers and operators will evaluate to an integer. Fractions are dropped in integer
division. A mathematical expression which contains a floating-point number or a
function will evaluate to a floating-point number. Consider the following examples.

9/2 evaluates to 4
9/2.0 evaluates to 4.5
log(100) evaluates to 2.0
2 ∗ 2 ∗ 2 ∗ 2 evaluates to 16
The first expression evaluates to the integer 4, since the expression consists

entirely of integers and the division operator. The second expression, however,
evaluates to the floating-point number 4.5, since it contains a mixture of an integer
and a floating-point number. The third expression evaluates to the floating-point
number 2.0, since it contains the log function. The fourth expression evaluates to
the integer 16, since it consists entirely of integers and the multiplication operator.

In addition, integer and floating-point expressions may be subdivided into two
further categories: constant expressions and variable expressions. Constant expres-
sions are expressions that the SGFramework translator can evaluate to a constant
at translation time. Constant expressions consist of numbers, constants, operators,
internal functions and user-defined functions. Variable expressions are expressions
that the SGFramework translator cannot evaluate to a constant at translation time.
They contain at least one variable, array element, function argument, or external
function. As a final note, integer expressions are always constant, since they cannot
contain variables, array elements, function arguments, or external functions.

1.1.3 Strings

A string is a collection of one or more characters enclosed by double quotes. Every
displayable ASCII character except the double quote (”) character is a valid string
character. Strings may not be broken over multiple lines in a specification file. The
syntax of strings is as follows.

[”] character +[”] where character is any printable ASCII character except
for the double quote character.

Examples of strings are as follows.

"Hello,"
"Welcome to SGFramework."

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 5

"This is an example of a valid string."

1.1.4 Identifiers

Identifiers are used as constant, variable, array and user-defined function names.
Certain identifiers are reserved as keywords. Since keywords have a special mean-
ing, they should not be used as constant, variable, array and user-defined function
names. Doing so will result in an error. Furthermore, SGFramework contains over
40 internal functions. The names of internal functions also should not be used as
constant, variable, array and user-defined function names. Consult the internal
function section for the names of the internal functions.

Naming Convention

Identifiers must begin with a letter, which is optionally followed by one or more
letters or digits.

voltage, Electron, hOLe, cf4

are examples of valid identifiers, whereas

_voltage, elec_hole, 9lives, cf4+

are examples of invalid identifiers. Identifiers are not case sensitive unless the case-
sensitive command switch is specified. Only the first seven characters of an identifier
are guaranteed to be significant. Therefore the identifiers CH2OHCHOHCH2OH
and CH2OHCHOHCH2NH2 may be identical and should not be used. The syntax
of identifiers is as follows.

letter letter , digit ∗ where letter is the set [A-Z,a-z].

Keywords

Keywords are not case sensitive. Keywords may not be used as identifiers, since the
translator interprets them in special ways. Using a keyword in place of an identifier
will usually result in a syntax error. SGFramework reserves the following identifiers
as keywords.

‘accuracy’,
‘algorithm’,
‘all’,
‘and’,
‘append’,
‘assign’,
‘begin’,
‘call’,
‘close’,
‘comment’,

6 User’s Manual

‘const’,
‘coordinates’,
‘damping’,
‘diagonal’,
‘divisions’,
‘do’,
‘edge’,
‘else’,
‘end’,
‘exit’,
‘equ’,
‘file’,
‘fill’,
‘func’,
‘gausselim’,
‘goto’,
‘if’,
‘ilu’,
‘infinity’,
‘iterations’,
‘known’,
‘label’,
‘length’,
‘linear’,
‘linsol’,
‘logarithmic’,
‘main’,
‘maximum’,
‘minimum’,
‘newton’,
‘no’,
‘none’,
‘not’,
‘open’,
‘or’,
‘over’,
‘pcg’,
‘point’,
‘preconditioner’,
‘read’,
‘real’,
‘rectangles’,
‘refine’,
‘region’,

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 7

Table: Operator Precedence

Operations Associativity Precedence
(unary) +, (unary) −, not right-to-left highest
∗, / left-to-right
+, − left-to-right
>, <, >=, <=, ==, <> left-to-right
and, or, xor left-to-right lowest

‘return’,
‘set’,
‘signedlog’,
‘solve’,
‘sor’,
‘sort’,
‘unknown’,
‘var’,
‘while’,
‘write’,
‘xor’,
‘yes’, and
‘zero’.

1.1.5 Operators

SGFramework supports the addition, subtraction, multiplication, division, negation
and exponentiation operators. The precedence of these operators is shown in the
table.

The unary plus, unary minus, addition, subtraction, multiplication, and division
operators (+, −, ∗, /) behave as expected. The greater than, less than, greater
than or equal to, less than or equal to, equal to, and not equal to operators (>,
<, >=, <=, ==, <>) evaluate to 0 or 1 if both the left and right operands are
integer expressions, or 0.0 or 1.0 if either the left or right operands are floating-point
expressions. If the expression is true, unity is the result; while if the expression is
false, zero is the result. The not, and, or and exclusive or (xor) operators likewise
return unity if the expression is true and zero if the expression is false. However,
these operators assume that nonzero operands are true. Hence the expression ‘5
and 3’ evaluates to 1. Left-to-right associative operators with the same precedence
are evaluated from left to right. Right- to-left associative operators with the same
precedence are evaluated from right to left. Consider the following examples.

4 + 5 ∗ −6 evaluates as 4 + (5 ∗ (−6)) = 4 +−30 = −26
3− 4− 7.0 evaluates as (3− 4)− 7.0 = −1− 7.0 = −8.0
3 > 2and4 > 9 evaluates as (3 > 2)and(4 > 9) = 1and0 = 0
5 xor not 4 + 2 evaluates as 5 xor ((not 4) + 2) = 5 xor (0 + 2) = 0

8 User’s Manual

In the first example, the operations are performed in the following order: nega-
tion (unary minus), multiplication and addition. In the second example, the left
subtraction operation is performed first followed by the right subtraction operation.
Notice the result is a floating point number as the last operator is the subtraction
of an integer and a floating-point number. In the next example, the greater than
operators are evaluated before the and operator. The first greater than operation
is true, hence unity is the result. The second greater than operation is false, hence
zero is the result. The fourth example uses both boolean and mathematical oper-
ators. The not operator has highest precedence, so it is evaluated first. Since its
operand is true (nonzero) it evaluates to zero (false). Next the addition operator is
evaluated and finally the exclusive or operator.

1.1.6 Constants

A constant is a value that is fixed - it does not change during the simulation. Proper
use of constants can make a specification file more readable and manageable.

Declaring Constants

To declare a constant one must type the keyword ‘CONST’ followed by an identifier,
an equal sign, an expression which evaluates to a constant and a semicolon. Multiple
constants may be declared in the same constant statement. The syntax of the
constant statement is as follows.

CONST identifier ‘=’ const expr |‘,’ ... identifier ‘=’ const expr | ‘;’
Examples of constant statements are as follows:

CONST T = 300; // temperature (K)
CONST Ks = 11.8; // dielectric constant of Si
CONST k = 1.381e-23; // Boltzmann’s constant (J/K)
CONST q = 1.602e-19; // charge of an electron (C)
CONST Vo = k*T/q; // potential scaling (V)

CONST MIN = 2, MEAN = 8, MAX = 16;
CONST TRUE = 1, FALSE = 0;
CONST A = 20, B = sq(A), C = ln(B);

A constant expression is an expression that evaluates to a constant. All pre-
viously defined constants and user-defined functions as well as numbers, operators
and internal functions may appear in constant expressions. Variables and array ele-
ments, on the other hand, cannot appear in constant expressions, since their values
need not remain constant throughout a simulation. This is not to say that variables
or array elements cannot be initialized to a value which does not change during
a simulation. However, in general the values of variables and array elements may
change during a simulation. Since the translator has no knowledge of which vari-
ables and array elements remain constant and which change, all variables and array

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 9

elements are excluded from constant expressions. See the following sections for
more information concerning variables, arrays, user-defined functions and internal
functions.

Using Constants

It is advantageous to use constants when the same value appears many times
throughout a specification file. Consider the following specification file which solves
Poisson’s equation on a nine-by-nine square grid with uniform spacing. The elec-
trostatic potential is held at zero on the boundary and 10 (volts) at the center.

var V[9,9];
unknown V[1..7,1..7];
known V[4,4];

equ V[i=1..7,j=1..7] ->
V[i-1,j] + V[i,j-1] - 4.0*V[i,j] +
V[i+1,j] + V[i-1,j] = 0.0;

begin main
assign V[i=4,j=4] = 10.0;
solve;
write;

end

Suppose we decide that the simulation is not accurate enough. To remedy this
problem, we wish to more than double the number of grid points. Let us choose a
twenty-one by twenty-one grid. Since the dimensions of the array V are explicitly set
to nine, we need to manually change all of the integer quantities in this simulation,
i.e., the nines to twenty-ones, the sevens to nineteens, and the fours to tens. If we ran
this simulation and decided we needed still more accuracy, we would have to repeat
this process again. A better way to write this simulation is to define a constant
which specifies the dimensions of the array. Consider the following simulation.

const DIM = 9; // number of x and y grid points

const Vcenter = 10.0; // voltage at center of grid (volts)

// define array V and make all array elements unknowns

// except for those at the center and on the boundary

var V[DIM,DIM];

unknown V[1..DIM-2,1..DIM-2];

known V[DIM/2,DIM/2];

// Poisson’s equation

equ V[i=1..DIM-2,j=1..DIM-2] ->

V[i-1,j] + V[i,j-1] - 4.0*V[i,j] +

10 User’s Manual

V[i+1,j] + V[i-1,j] = 0.0;

// initialize center voltage, solve Poisson equation and

// write the results

begin main

assign V[i=4,j=4] = Vcenter;

solve;

write;

end

Now if we ran this simulation and decided we needed more accuracy (suppose
a twenty-one by twenty-one grid), we would only have to change the value of the
constant DIM. Although the two specification files are equivalent in function, the
second specification file is advantageous. It is much easier to change the number
of grid points in the second simulation than the first. Furthermore, the lack of
comments in the first specification file make its purpose more difficult to determine.

1.1.7 Variables and Arrays

Variables are blocks of memory that store floating-point numbers whose value may
change during a simulation. Every variable must be declared before it can be used
in a SGFramework specification file. Failure to declare a variable before using it will
result in an error. Array variables, usually called arrays, are a group of variables
that are referenced by a common identifier and one to three indices. The use of
arrays can greatly simplify the writing of specification files by reducing redundancy.

Declaring Variables

It is easy to declare variables in SGFramework. To declare one or more variables,
type the keyword ‘VAR’ followed by one or more identifiers, separated by commas.
As with all SGFramework statements, the variable declaration statement must end
with a semicolon. The syntax of the variable declaration statement is as follows.

VAR identifier |‘,’ ... identifier | ‘;’
Examples of variable declaration statements follow.

VAR voltage;
VAR ElectronConcentration, HoleConcentration;
VAR GasMileage, OdometerReading, TotalDistance;
VAR CF4,H2O,CaCl;
VAR A,B,C;

It should be emphasized that only the first seven characters of variable names
are guaranteed to be significant. Therefore the following declaration statements
may result in errors.

VAR ElectronLifetime, ElectronMobility;
VAR ElectrostaticPotential, ElectrostaticField;

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 11

Declaring Arrays

Declaring arrays is very similar to declaring variables. The only difference is that
the array size must also be specified. To declare an array, type the keyword ‘VAR’,
an identifier and the number of items to be stored, with the number surrounded
by square brackets. Like variables, multiple arrays may be declared in the same
statement with the arrays separated by commas. The statement must end with a
semicolon. The syntax of the array declaration statement is as follows.

VAR identifier ‘[’ int expr ‘]’ |‘,’ ... identifier ‘[’ int expr ‘]’| ‘;’
Examples of array declaration statements are as follows:

VAR DaysOfTheWeek[7], MonthsOfTheYear[12];

VAR V[20], n[20], p[20];

In the above examples the size of the array was specified by an integer. However,
any mathematical expression that evaluates to an integral constant is also accept-
able. (See subsection 1.1.2 for more information on integral constant expressions.)
Furthermore, multidimensional arrays (arrays which are referenced by more than
one index) may be declared. The maximum number of dimensions an array may
have is three. The syntax of the multidimensional array declaration statement is as
follows.

VAR identifier ‘[’ int expr |‘,’ ... int expr | ‘]’ |‘,’ ... identifier ‘[’ int expr |‘,’ ...
int expr | ‘]’| ‘;’

Variables, single-dimensional arrays and multidimensional arrays may all be
declared in the same statement. The following examples demonstrate this point.

CONST DIM = 9;
CONST HOLES = 18;
CONST PLAYERS = 15;

VAR V[DIM];
VAR Scores[PLAYERS, HOLES];
VAR Points[4*DIM-6,3+10/4], Series, Strikes[PLAYERS];

The number of elements (size) in each array dimension must be greater than or
equal to one. If the size of any dimension of an array evaluates to zero, a negative
integer or a floating-point number, then an error will occur. As a final note, consider
the first array declaration in the above examples. An array named V is declared
with 9 members (since DIM is a constant equal to 9). The individual members of
this array are referred to as V[0], V[1], V[2], ... V[7], V[8]. When referencing an
array element the index may be between zero and the size of the array dimension
minus one. For multidimensional arrays each index may be between zero and that
dimension’s size minus one. SGFramework follows the C++ language array indexing
convention, which is different from those for languages such as Pascal and Fortran.

12 User’s Manual

Specifying Unknown Variables

Typically not all of the variables or array elements declared in a specification file are
unknown quantities whose value is determined by solving the equations. Consider
the two-dimensional Poisson’s equation file listed in Subsection 1.1.6. The center
mesh point, array element V [DIM/2, DIM/2], remains set to 10.0 volts throughout
the simulation. Likewise the elements at mesh points on the perimeter of the mesh
remain at zero volts throughout the simulation.

Because of this it is necessary to tell the SGFramework numerical algorithm
modules which variables and array elements are the unknown quantities, for which
a solution must be obtained. If this is not done, the equation headers are used to
determine what is known and unknown - see 1.1.9. In order to declare variables or
array elements as unknown, these variables and array elements must first be declared
as variables using the VAR statement and then tagged as unknown variables using
the UNKNOWN statement. Furthermore, ‘unknown variables’ may be untagged
(converted back to known variables) by the KNOWN statement. The syntax of
these statements is as follows.

UNKNOWN identifier |‘,’ ... identifier | ‘;’;
UNKNOWN identifier ‘[’ range |‘,’ ... range | ‘]’ |‘,’ ... identifier ‘[’ range |‘,’ ...

range | ‘]’| ‘;’
KNOWN identifier |‘,’ ... identifier | ‘;’;
KNOWN identifier ‘[’ range |‘,’ ... range | ‘]’ |‘,’ ... identifier ‘[’ range |‘,’ ...

range | ‘]’| ‘;’
Although it is not shown above, both variables and arrays may be present in the

same UNKNOWN or KNOWN statement. Arrays require a range (or a collection
of ranges) that specify which array elements should be tagged or untagged as known
and unknown. The syntax of a range is as follows.

int expr |.. int expr |: int expr ||
all
The first integer expression is the range’s starting value, the second integer

expression is the range’s ending value, and the third integer expression is the range’s
step value. All of the integer expressions must evaluate to an integer constant. If
only the start value is specified, then range spans only that value. If the step value
is omitted, then it defaults to plus or minus one. It is not allowable to specify a
start value and a step value without the range’s ending value, since such a range
is meaningless. Examples of the KNOWN and UNKNOWN statements can be
found in the example specification file given in Subsection 1.1.6 above and in the
following examples. If the keyword ‘ALL’ is specified, then the range loops through
all elements, i.e., its starting value is zero, its ending value is the size of the array
dimension minus one, and its step is unity.

VAR Cell[3,3,3], Total, Time, x;
UNKNOWN Cell[0..2,1,0..2], Total, Time, x;
KNOWN Cell[1,0..2,1], Time;

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 13

Table: Internal Functions by Type

Group Internal Function List
Trigonometric sin, cos, tan, csc, sec, cot
Inverse Trigonometric arcsin, arccos, arctan, arccsc, arcsec, arccot
Hyperbolic sinh, cosh, tanh, csch, sech, coth
Inverse Hyperbolic arcsinh, arccosh, arctanh, arccsch, arcsech, arccoth
Exponential and Logarithmic exp, log, pow10, log, pow, sq, sqrt, inv
Miscellaneous ave, bern, aux1, aux2, erf, nsdep, ngdep
Special abs, sign, nonneg, step, min, max

After these KNOWN and UNKNOWN statements are processed, the following
variables and array cells are unknown variables: Total, x, Cell[0, 1, 0], Cell[0, 1, 1],
Cell[0, 1, 2], Cell[1, 1, 0], Cell[1, 1, 2], Cell[2, 1, 0], Cell[2, 1, 1] and Cell[2, 1, 2]. Note
that subsequent KNOWN and UNKNOWN statements may override the results of
previous statements.

1.1.8 Functions

SGFramework supports three types of functions: internal, user-defined, and external
functions. Internal functions are built into the SGFramework language and need not
be declared. User-defined functions are defined by the user in the specification file.
External functions are declared in the specification but are implemented in some
programming language, compiled, and then linked to the source code generated by
SGFramework.

Internal Functions

SGFramework contains over forty internal functions which are available to every
specification file for use. All SGFramework functions accept integral or floating-
point expressions as arguments and return floating- point values. The internal
functions can be divided into seven groups: trigonometric functions, inverse trigono-
metric functions, hyperbolic functions, inverse hyperbolic functions, exponential and
logarithmic functions, miscellaneous functions and special functions whose deriva-
tives are singular. The following table lists the internal functions according to
their type; the table lists the syntax and a description of the internal functions in
alphabetical order.

Since the max, min, nonneg, sign and step functions have singular derivatives
and since SGFramework does not implement the partial derivatives of the nsdep
and ngdep functions, it is recommended that these functions are not used in the
constraint equations which are solved by SGFramework using a Newton method.
(At a minimum, the user should be aware of the numerical issues resulting from
the use of these functions in such equations.) If these functions are present in the
constraint equations and have arguments containing unknown variables or array
elements, then the Jacobian matrix will have singularities which may cause unde-

14 User’s Manual

Table: Syntax/Description of Internal Functions

abs(x) returns the absolute value of the argument x
arccos(x) returns the inverse cosine of the argument x
arccosh(x) returns the inverse hyperbolic cosine of the argument x
arccot(x) returns the inverse cotangent of the argument x
arccoth(x) returns the inverse hyperbolic cotangent of the argument x
arccsc(x) returns the inverse cosecant of the argument x
arccsch(x) returns the inverse hyperbolic cosecant of the argument x
arcsec(x) returns the inverse secant of the argument x
arcsech(x) returns the inverse hyperbolic secant of the argument x
arcsin(x) returns the inverse sine of the argument x
arcsinh(x) returns the inverse hyperbolic sine of the argument x
arctan(x) returns the inverse tangent of the argument x
arctanh(x) returns the inverse hyperbolic tangent of the argument x
aux1(x) returns x/sinh(x)
aux2(x) returns 1/ (1 + ex)
bern(x) returns x/ (ex − 1)
ave(x,y) returns average value of x and y
csc(x) returns the cosecant of the argument x
csch(x) returns the hyperbolic cosecant of the argument x
cos(x) returns the cosine of the argument x
cosh(x) returns the hyperbolic cosine of the argument x
cot(x) returns the cotangent of the argument x
coth(x) returns the hyperbolic cotangent of the argument x

erf(x) returns 2√
π

x∫
0

exp(−s2)ds, the error function of the argument x

exp(x) returns the exponential of the argument x, i.e. e to the x
inv(x) returns the reciprocal of the argument x
ln(x) returns the natural log of the argument x
log(x) returns the log to base 10 of the argument x
max(x,y) returns x if x > y, otherwise y is returned
min(x,y) returns x if x < y, otherwise y is returned
ngdep(x,y,W ,ax,ay) if x̂ = |x| −W/2 is positive, returns exp

(−axx̂2 − ayy2
)
; otherwise returns 1.0

nonneg(x) returns 1.0 if x ≥ 0.0, otherwise 0.0 is returned
nsdep(x,W ,Dt) returns 0.5

[
erf

(
W/2+x

2
√

Dt

)
+ erf

(
W/2−x

2
√

Dt

)]

pow(x,y) returns x to the power y, i.e. xy

pow10(x) returns 10 to the power x, i.e. 10x

sec(x) returns the secant of the argument x
sech(x) returns the hyperbolic secant of the argument x
sign(x) returns 1.0 if x > 0.0, returns 0.0 if x = 0.0 and −1.0 if x < 0.0
sin(x) returns the sine of the argument x
sinh(x) returns the hyperbolic sine of the argument x
sq(x) returns the square of the argument x
sqrt(x) returns the square root of the argument x
step(x) returns 1.0 if x ≥ 0.0, otherwise 0.0 is returned
tan(x) returns the tangent of the argument x
tanh(x) returns the hyperbolic tangent of the argument x

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 15

sirable behavior during the numerical solution of the equations. Examples of the
use of internal functions can be found in the specification files listed in this man-
ual. This applies to virtually all the semiconductor simulations, beginning with the
simulation listed in Chapter ??, in the input file pn01.sg.

User-Defined Functions

In many simulations it is very convenient to declare and use application-specific
functions. It is typical to implement parameter models as user-defined functions.
For instance, parameter models for the electron and hole mobilities are implemented
as user-defined functions in the simulations presented in this book. Once declared,
user-defined functions may be used everywhere that internal functions are allowed.
User-defined functions consist of a header and a body, as discussed below.

User-Defined Function Headers To declare a user-defined function header, one
must type the keyword FUNC followed by an identifier, and a parenthesized list of
function arguments. The identifier following the FUNC keyword is the user-defined
function’s name. The argument list consists of a comma-separated list of identifiers.
Each identifier is the name of a function argument. Each argument may optionally
be enclosed by a pair of less than ‘<’ and greater than ‘>’ signs.

FUNC ‘(’ |‘<’| identifier |‘>’| |‘,’ ... |‘<’| identifier |‘>’|| ‘)’
Normally, each user-defined function is symbolically differentiated with respect

to each function argument. Both the function and its partial derivatives are then
coded in the output file. The partial derivatives are needed, since functions, in
general, may be used in equations, which in turn are differentiated with respect
to each unknown variable and array element. The equations are differentiated to
obtain expressions that evaluate the elements of the Jacobian matrix. If, for some
reason, the user does not wish to generate the ith partial derivative, then the user
can enclose the ith argument between less than and greater than signs. There
are at least two reasons why one might not want to generate a partial derivative
of a user-defined function. First, one may know that the partial derivative always
evaluates to zero. Second, one may not want to include the contribution of a partial
derivative when evaluating the elements of the Jacobian matrix. For instance, in
semiconductor simulations, the distance between mesh points is frequently a user-
defined function argument. Since this distance is usually constant with respect to
the simulation’s unknown variables, there is no need to symbolically differentiate

the function with respect to this argument or to evaluate this partial derivative.
Hence this argument is one which is often enclosed within less than and greater
than signs.

User-Defined Function Bodies The body of a user-defined function consists of
zero or more function statements, followed by a return statement. Two types of
function statements are allowed: constant statements and assignment statements.
The syntax of function constant statements is identical to the syntax of the con-
stant statements described in Section 1.1.6. The expression which defines the con-
stant statement must evaluate to a constant. Hence, all previously defined ‘general’

16 User’s Manual

constants and user-defined functions as well as numbers, operators, and internal
functions may appear in constant expressions. Variables and array elements, on
the other hand, cannot appear in a constant expression. In addition, the constant
expression may contain the function constants which have been previously defined
in the function in which the constant statement appears. One or more constants
may be defined in a single function constant statement. The syntax of the function
constant statement is as follows.

CONST identifier ‘=’ const expr |‘,’ ... identifier ‘=’ const expr | ‘;’
The only difference between general constants (constants declared outside of a

function) and function constants is the scope of the constant. General constants
may be used from their point of declaration to the end of the file. Function constants
may be used only from their point of declaration to the end of the function in which
they are defined. The names of function constants need not be unique throughout
the file. The bodies of several user-defined functions may define the same constant.
The value of the constant may also be different in any or all of the user- defined
functions in which it is defined. Second, the name of a function constant may be
the same as the name of a general constant. For instance, consider the following
specification file.

const COUNT = 9;
var a,b,c;

func MyFunc(x,y)
const TOTAL = COUNT + 3;
const COUNT = TOTAL;
return (x < y) * COUNT;

begin main
assign a = COUNT, b = 10;
assign c = MyFunc(a,b);

end

The first statement declares the COUNT constant whose value is 9. The second
statement declares three variables. Next the function MyFunc is declared. My-
Func declares two function constants: TOTAL and COUNT. TOTAL is equal to
COUNT plus 3, that is, 12. Note that COUNT, in this case, refers to the general
constant COUNT whose value is 9. SGFramework does this because the function
constant COUNT has not been declared yet. The second function statement defines
a function constant named COUNT and assigns it the value of TOTAL, which is
12. MyFunc’s return value is COUNT if x is less than y, or 0 is x is greater than or
equal to y. Note that COUNT, in this case, refers to the function constant COUNT
whose value is 12, not the general constant COUNT whose value is 9. Since func-
tions return floating-point numbers, MyFunc actually returns the value 12.0 or 0.0.
The integer constant is automatically converted to a floating-point number by the
return statement. Lastly, let us look at the main procedure. The first statement

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 17

assigns the variable a the value of the general constant COUNT, which is 9, and
assigns the variable b the value 10. The variable c is assigned the value of MyFunc
whose arguments are a and b. Since the function arguments x and y correspond
to variables a and b, and x is less than y, the variable c is assigned the value 12.0,
which is the (floating-point) value of the function constant COUNT.

The second type of optional body statement is a function assignment statement.
Function assignment statements declare temporary variables that may be used in
the function in which they are declared. The syntax of the function assignment
statement is the keyword ‘ASSIGN’ followed by an identifier that is the variable’s
name, an equal sign, a function assignment expression and a semicolon.

ASSIGN identifier ‘=’ func expr |‘,’ ... identifier ‘=’ func expr | ‘;’
The function assignment expression may contain constants, numbers, internal

variables, previously declared user-defined and external functions, internal func-
tions, the function arguments and mathematical operators. One or more function
variables may be declared in a single function assignment statement by comma-
separating the declarations and terminating the last declaration with a semicolon.

The function body must end with a return statement. The syntax of the return
statement consists of the keyword RETURN followed by a return expression and a
semicolon.

RETURN func expr ‘;’
The syntax of the return expression is identical to that of the function assignment

expression. The value of the return expression is the value which is returned by the
user-defined function. If the expression evaluates to an integral value, the value is
automatically converted to a floating-point number.

Consider the three following user-defined functions.

func ave3(x, y, z)
assign sum = x + y + z ;
return sum / 3.0 ;

func grad(y1, y2, <h>)
return (y2 - y1) / h ;

function AreaOfCircle(r)
const PI = 3.141592654 ;
return PI*sq(r) ;

The first function returns the average of its three arguments. It does this by first
summing its three arguments and storing the result in a function variable. Then it
returns one-third of the sum.

The second function returns the finite-difference approximation to the (one-
dimensional) gradient. The arguments y1 and y2 will typically be the values of
some scalar field at adjacent mesh points, and h is the distance between the mesh
points. Since the location of the mesh points is often fixed, throughout the duration
of the simulation, the derivative of the grad function with respect to the argument

18 User’s Manual

h is not needed. To instruct the simulation not to evaluate this particular partial
derivative, the h argument is enclosed by ‘<’ and ‘>’.

The last function returns the area of a circle with radius r. To do this the
function defines the local (function) constant PI. It then returns PI times the square
of the radius.

External Functions

In addition to internal and user-defined functions, SGFramework supports external
functions. External functions can be used anywhere that internal or user-defined
functions can be used, except in constant expressions. External functions are func-
tions whose bodies are not defined in the specification file. Instead the body of
an external function is implemented in a programming language (such as C, C++,
Fortran or Pascal.) Consequently the user must compile and link external functions
with the SGFramework-generated code and a numerical algorithm module (NAM).
Since implementing these functions requires a thorough understanding of code and
data structures generated by the SGFramework translator, this topic will not be
discussed further here. External functions are scarcely used in the simulations pre-
sented in this book, and, when they are used, the source-code implementation is
provided and is well-documented.

1.1.9 Constraint Equations

The constraint equations usually form a system of linear or nonlinear equations
which a SGFramework numerical algorithm module solves to obtain the values of the
unknown variables. If one is modeling a physical system, these equations constitute
a mathematical description of physical laws (or approximations to those laws) as
well as fixed relationships (constraints) between the system variables. For instance,
if a system of masses and springs is modeled, application of Newton’s and Hooke’s
laws provides the simulation’s constraint equations. If the electrostatic interaction
of a system of point charges is modeled, application of Coulomb’s law provides the
simulation’s constraint equations. If the governing equations are partial differential
equations, the constraint equations usually will be the corresponding discretized
form of the PDEs. (We use the words ‘constraint equations’ here in a manner
which is not entirely consistent with the notion of constraint equations as used in
Lagrangian and Hamiltonian mechanics.)

The syntax of the constraint-equation statement is as follows.
EQU header ‘->’ expr = expr ‘;’
The use of mesh labels within constraint equations is described in Section 1.2,

and especially in Subsection 1.3.1, after mesh labels have been introduced.

Constraint Equation Headers

The constraint-equation header consists either of a variable name or an array name
followed by one to three loops enclosed in brackets. The syntax of the header is as

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 19

follows.
identifier identifier ‘[’ loop |‘,’ ... loop | ‘]’
The syntax of a loop is similar to that of a range with the addition of an index

identifer. The syntax of a loop is as follows.
identifier ‘=’ range
Loop indices are similar to variables with the following exceptions. First, loop

indices store integer quantities, whereas variables store floating-point quantities.
Second, the scope of a loop index is limited to the equation statement in which it
appears. There are three implications of the second statement. First, the name of
a loop index may be reused in subsequent equations. Second, if two or more loops
appear in a header, then the indices must be unique. Third, indices may appear
in the range expression of subsequent loops of the same statement but not in the
range expressions of the loop in which the index is defined.

The equation headers serve two purposes. First, the headers may specify which
variables and array elements are unknown. If KNOWN and UNKNOWN statements
do not appear in the specification file, SGFramework uses the equation headers to
determine which variables are unknown. Each variable and array element specified
by the array header is assumed to be unknown in the absence of KNOWN and
UNKNOWN statements. However, if any KNOWN or UNKNOWN statements
appear in the file, all declared variables and array elements are assumed to be
known unless explicity tagged as unknown by an UNKNOWN statement. For more
information about KNOWN and UNKNOWN statements, refer to Subsection 1.1.7.

The main purpose of equation headers is to associate equations with unknown
variables. If the header is a variable, then the equation is associated with that
variable. Consequently, the variable which appears in the header should not be
explicitly tagged as a known variable via a KNOWN statement. Furthermore,
if a KNOWN or UNKNOWN statement appears in the specification file, header
variables should explicitly be tagged as unknown. If an equation is associated with
a known variable, then SGFramework will issue a warning that the equation is
useless.

Frequently, one wishes to solve a system of discretized partial differential equa-
tions when simulating a physical system. Often the resulting discretized equations
can be represented by a couple of template equations, i.e., equations which have
the same form but different array indices. Consider the SGFramework specification
file of Subsection 1.1.6. This specification file numerically solves Poisson’s equa-
tion on a nine by nine rectangular mesh. The electrostatic potential, V , is held
constant at the center of the mesh and its perimeter. Consequently, the V array
has 81 elements, 48 of which are tagged as unknown variables. Since there are 48
unknowns in this specification file, there must be 48 constraint equations as well.
These equations are as follows.

V[0,1] + V[1,0] - 4 * V[1,1] + V[2,1] + V[1,2] = 0
V[0,2] + V[1,1] - 4 * V[1,2] + V[2,2] + V[1,3] = 0
V[0,3] + V[1,2] - 4 * V[1,3] + V[2,3] + V[1,4] = 0

20 User’s Manual

...
V[6,7] + V[7,6] - 4 * V[7,7] + V[8,7] + V[7,8] = 0

Since all of these constraint equations have the same form and differ only in the
values of their array indices, they may be represented by the following template
(indexed) constraint equation.

V[i-1,j] + V[i,j-1] - 4 * V[i,j] + V[i+1,j] + V[i,j+1] = 0

Both the indices i and j loop through the values one through seven, i.e., i =
1..7 and j = 1..7. Consequently the header for this constraint equation would be
V[i=1..7,j=1..7]. Since the electrostatic potential is known at the center, there is
no equation associated with the array element V[4,4].

When SGFramework processes equation statements, it associates that equation
with either a variable or one or more array elements. An equation is tagged ‘useless’
if SGFramework could not associate the equation with one or more unknown vari-
ables and/or array elements. This warning is usually generated if (1) the variable
or at least one array element with which one wishes to associate the equation is not
specified as unknown or (2) the variable or array elements are already associated
with a previous equation. It is important to recognize that SGFramework associates
a variable or array element with the first equation it encounters that specifies that
variable or array element in its header. Consider the following example.

var x[10];
unknown x[all];

equ x[j=0..7] -> x[j] = 5.0;
equ x[j=8..9] -> x[j] = 3.0;
equ x[j=7..8] -> x[j] = 4.0;

The last equation is ‘useless’, since the equation associated with array element
x[7] is the first equation and the equation associated with array element x[8] is the
second.

Constraint Equation Expressions

Constraint-equation expressions are mathematical expressions consisting of previ-
ously defined constants, variables, array elements, external functions, internal func-
tions and user-defined functions as well as operators and the index variables of the
loops that are specified in the constraint equation header. Consider the following
system of equations.

x - y - z = 0
x - y + z = 2
x + y + z = 6

The above equation can easily be implemented as follows:

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 21

var x, y, z;
equ x -> x - y - z = 0 ;
equ y -> x - y + z = 2 ;
equ z -> x + y + z = 6 ;

It worth noting that in the above system of equations, any of the equations
could be associated with any of the variables. In general, this is not true. One
cannot associate a variable or array element with an equation in which the variable
or array element does not appear in the equation’s expression.

1.1.10 Procedures

Procedures are needed for several reasons in a simulation. Usually it is necessary
to initialize variables and array elements prior to solving the specified equations in
order to determine the values of the unknown variables and/or array elements. (By
default, all variables and/or array elements are initialized to zero.) In addition it
is often desirable to solve the equations for different boundary conditions and to
output simulation results to data files.

Procedures are the mechanism by which users can initialize their variables and/or
array elements, tell the numerical algorithm modules to solve their specified equa-
tions and write their simulation results to data files. Procedures are each specified
by a unique name and contain one or more procedural statements. The syntax for
procedures is:

begin identifier
procedural statement ‘;’
procedural statement ‘;’
...
end
Procedures start with a header that consists of the keyword ‘begin’, followed

by an identifier which serves as the procedure’s name. Procedures terminate with
the keyword end. Between the header and terminator are one or more procedural
statements. In addition, SGFramework supports external procedures. External
procedures are directly coded in a programming language such as C/C++, Fortran
or Pascal. External procedures are specified by generating a procedure with no
body (i.e., a procedure with a header directly followed by the terminating keyword
‘end’.)

Every simulation must have at least one procedure, the main procedure. The
syntax of the main procedure is identical to that of the generic procedure described
above, except for the header. The main procedure’s header consists of the keyword
‘begin’ followed by the keyword ‘main’. Upon execution of a SGFramework simula-
tion, the simulation initializes its internal data structures and numerical algorithm
module. After this start-up code is complete, program control is turned over to
the main procedure. Each statement in the main procedure is executed, branching
to and returning from subroutines (other procedures) as necessary. When the end

22 User’s Manual

of the main procedure is reached, the simulation calls its clean-up code and the
simulation terminates.

Between the procedure’s header and terminator are one or more procedural
statements. There are six types of procedural statements: assignment statements,
single-word statements, file input/output statements, subroutine execution state-
ments, conditional statements and looping statements. Each of these statement
types will be discussed in detail.

Assignment Statements

Assignment statements are used initialize and/or modify the values of variables and
array elements. By default the values of all simulation variables and array ele-
ments are set to zero upon invoking the simulation. This default may be overridden
by means of assignment statements for some or all of the variables and array ele-
ments. Assignment statements may also modify the values of variables and array
elements in the middle of simulation to simulate time varying boundary conditions.
Finally, assignment statements may calculate quantities based upon other variables
and elements. For instance, assignment statements are used in the semiconductor
simulations

1. To initialize variables and array elements,

2. To modify the values of boundary conditions such as contact voltages which
provide the interface between regions where the physical equations are solved,
and

3. To calculate quantities such as terminal currents in terms of variables and
array elements.

The difference between assignment statements in procedures and those in func-
tions is as follows. Assignment statements in functions both declare and initialize
variables that are visible only in the function where they are declared. Assignment
statements in procedures do not declare new variables or array elements. They are
strictly used to modify the values of existing variables and array elements that are
visible to the entire program, i.e. those variables and array elements which have
been declared in VARIABLE statements. The syntax of ASSIGNMENT statements
is as follows.

ASSIGN identifier = expr ‘;’
ASSIGN identifier ‘[’ loop |‘,’ ... loop | ‘]’ = expr ‘;’
Procedural assignment statements begin with the keyword ‘assign’ followed by

an identifier, which is the name either of a previously declared variable or of a
previously declared array element. If the identifier is the name of an array element,
then it must be followed by a comma-separated list of loops enclosed in brackets.
The loops specify which array elements are included in the assignment statement.
See Section 1.1.9 for more information concerning loops. Whether the identifier
is the name of a variable or of an array, the statement is completed by an equal

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 23

sign, an expression and a semicolon. The expression may be any mathematically
valid formula composed of previously declared constants, variables, array elements,
functions as well as numbers, internal functions, and operators (as well as loop
indices, if applicable).

Examples of assignment statements can be seen throughout this book in numer-
ous specification files. For example, in the ‘Game of Life’ specification file that is
listed in the introduction, the following assignment statements were used:

assign t=0.0 ;

assign AO[i=is,j=js+1] = 1 ; // launch stop light

assign AO[i=is-1..is+1,j=js] = 1 ; //

assign AO[i=ig,j=jg+2] = 1 ; // launch glider

assign AO[i=ig+1,j=jg+1] = 1 ; //

assign AO[i=ig-1..ig+1,j=jg] = 1 ; //

assign A[i=all,j=all] = AO[i,j] ;

assign COUNT[i=1..LX-1,j=1..LY-1] =

AO[i-1,j-1] + AO[i-1,j] + AO[i-1,j+1] +

AO[i,j-1] + AO[i,j+1] +

AO[i+1,j-1] + AO[i+1,j] + AO[i+1,j+1];

assign A[i=1..LX-1,j=1..LY-1] =

(COUNT[i,j]==3) or (COUNT[i,j]+AO[i,j]==3);

assign AO[i=all,j=all] = A[i,j] ;

assign t = t+dt ;

These statements are largely self-explanatory. Some assignment statements used
above are for a single variable, some refer to a single element of an array, and some
apply to a specified range of elements of an array. (To see how this fits into the
overall input file, see Section ??.)

Single-Word Statements

There are three procedural statements that consist of single keywords: solve, write,
and exit. The syntax is the keyword followed by a semicolon.

solve ‘;’
write ‘;’
exit ‘;’
The solve statement causes the simulation to invoke the appropriate numerical

analysis algorithm to solve the specified equations to obtain the values of the un-
known variables and array elements. The equations are solved, starting by using
the current values of all of the simulation variables and array elements. The val-
ues of the unknown variables and array elements are modified as a consequence of

24 User’s Manual

invoking the solve statement.
The write statement dumps a snapshot of all the variables and array elements to

a binary data file, referred to as the result file. If a write statement is not explicitly
present in the simulation, an implicit write statement is appended after the last
statement in the main procedure. It is possible to override the behavior of the write
statement to dump a snapshot of selected variables and array elements by writing
code to customize the SGFramework default behavior. Data in the SGFramework
data files may be extracted and viewed using certain SGFramework tools such as
‘extract’ and ‘triplot’. The extract command is discussed in Section 1.4.8. The
triplot command is discussed in the section on Graphical Output, 1.4.10.

The exit statement causes the simulation to call its clean-up code and then
terminates the simulation.

Input and Output

In many circumstances, it is convenient to initialize variables and/or array elements
from numbers stored in data files rather than computing their values from a for-
mula. It may also be expedient to write the values of certain variables and/or array
elements to ASCII data files rather than dumping the values of all variables and/or
arrays to a binary result file. Towards this end, SGFramework provides several
commands to accomplish the input and output needs of most users.

Data Files SGFramework data files are ASCII files which can contain three types
of data: numerical data (floating-point numbers), labels and comments. The most
prevalent type of data in SGFramework data files is numerical data. Numerical
data is always treated as floating-point numbers, since this data either will initialize
variables and/or array elements or was generated by writing the values of variables
and/or array elements. Numerical data need not have any special format. It is only
required that each number be separated by whitespace (spaces, tabs, new lines,
etc.).

Labels mark a particular place in the data file in the same fashion as tabs mark
a book. When reading numerical data from an input file, one can instruct the
simulation to search for a particular label and read data starting from that point
in the input file. This feature is useful when several simulations use the same data
file to initialize their variables and/or array elements. Common data can be stored
at the beginning of the input file and simulation-specific data can be tagged with a
label and stored at the end of the data file.

Data files may also have comments. Like SGFramework mesh and equation
specification files, comments begin with two slash characters ’//’ and end at the
end of the line. Comments are ignored when reading numerical data and searching
for labels. Comments serve no other purpose than to annotate the data file for
human readability.

Opening Data Files In order to read data from or write data to an ASCII data
file, it is necessary first to open the file. The syntax for the open file statement is

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 25

as follows. The file open command begins with the keyword OPEN followed by a
string and a file mode. The command is terminated by a semicolon.

OPEN [”] file name [”] file mode ‘;’
The string following the ‘OPEN’ keyword specifies the full name of the file, i.e.,

path, name, and extension. The file mode is one of the following keywords: ‘READ’,
‘WRITE’, and ‘APPEND’. The READ file mode opens the data file for input of
data from the file. The WRITE and APPEND file modes open the data file for
output to the file. The differences between WRITE and APPEND are apparent
only when trying to open an existing data file. WRITE will erase and overwrite the
contents of the data file, whereas APPEND does what its name implies: it appends
the new data to the end of the existing data.

File Pointer When a file is opened for data input from the file, a pointer, referred
to as the file pointer, is positioned at the beginning of the file. When the simulation
reads numerical data from the file, it reads the first number that is located at or
following the file pointer. After it reads the value, the file pointer is advanced past
the data which was just read. Similarly, when the simulation is searching for a label
in a data file, it starts its search at the file pointer. If the search key is found, the
file pointer is updated to the position which immediately follows the label. If the
label is not found, the file pointer will point to the end of the data file. To locate a
search key which is located prior to the file pointer’s current location, the file must
first be closed and then reopened. Reopening the data file causes the file pointer to
be reset to the beginning of the file.

When a file is opened for data output to the file, the file pointer is located
at either the beginning or the end of the file, depending upon the mode in which
the file was opened. If the data file is opened with the WRITE mode, then the file
pointer is located at the beginning of the file. If the file is opened with the APPEND
mode, then the file pointer is located at the end of the file (unless, of course, the file
does not exist, in which case the beginning and the end of the file are the same).
Whenever numerical data, comments, or labels are written to the output file, the
information is written at the current location of the file pointer. The file pointer is
then updated to point to the end of the information that was written.

Reading from a Data File Once a file is open for input from the file, i.e., opened
with the READ file mode, numerical data from the file can be read into simulation
variables and array elements via the FILE READ command. The syntax for this
command is as follows. The FILE READ command begins with the keywords ‘FILE’
and ‘READ’ and is followed by a comma-separated list of identifiers. The command
is terminated by a semicolon. The identifiers in the list are the names of variables
and arrays into which the numerical data in the data file will be read. If an identifier
refers to the name of a simulation variable, only one number is read from the data
file. If, however, an identifier refers to the name of a simulation array, then several
numbers are read from the data file and stored sequentially in the elements of the
array. It is not possible to read data into a select range of array elements. Data
is read from the current position of the file pointer, and the file pointer is updated

26 User’s Manual

upon execution of this command.
FILE READ identifier |‘,’ ... identifier | ‘;’

Writing to a Data File Once a file is open for output to the file, i.e., opened with
the WRITE or APPEND file mode, the values of simulation variables and array
elements may be written to the data file via the FILE WRITE. The syntax for
this command is similar to the syntax of the FILE READ command. The FILE
WRITE command begins with the keywords ‘FILE’ and ‘WRITE’ and is followed by
a comma-separated list of identifiers. The command is terminated by a semicolon.
The identifiers in the list are the names of variables and arrays whose values will be
written to the data file. If an identifier refers to the name of a simulation variable,
its value will be written to the data file. If, however, an identifier refers to the
name of a simulation array, then the values of each of its array elements will be
sequentially written to the data file. It is not possible to write data from a selected
range of array elements. Data is written to the current position of the file pointer,
and the file pointer is updated upon execution of this command.

FILE WRITE identifier |‘,’ ... identifier | ‘;’

Closing a Data File Once data has either been read from or written to a data file,
the file needs to be closed before another file can be opened. It is a recommended
practice to always close a data file regardless of whether another file will be opened.
The syntax of the close file statement is very simple. The command starts with the
keyword ‘CLOSE’ and is terminated by a semicolon.

CLOSE ‘;’

Subroutine Execution Statements

As stated in the introduction to the procedure subsection, every SGFramework sim-
ulation must have a main procedure. When a SGFramework simulation is invoked,
an initialization procedure is first executed. After the simulation has initialized its
internal data structures, it then transfers program control to the main procedure.

Many simulations have additional procedures. Procedures provide a convenient
mechanism of grouping a series of related statements into a unit, which makes the
equation specification file more modular. A procedure can call another procedure
via a call statement. Typically, the statements in a procedure are executed sequen-
tially. When a call statement is encountered, program control is transferred to the
procedure that is called. Once all of the statements in the called procedure have
been executed, program control is transferred back to the calling procedure. The
syntax of the call statement is as follows.

CALL identifier ‘;’
Call statements begin the keyword ‘CALL’, followed by an identifier and a semi-

colon. The identifier is the name of a procedure which is to be executed.
Consider the following example.

var A, B, C;

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 27

begin MyProc1
assign C = A + B;

end

begin MyProc2
assign A = A + 1.0;
assign B = B - 2.0;
call MyProc1;

end

begin main
assign A = 3.0;
assign B = 7.0;
call MyProc2;
assign C = 2.0 * C;

end

After this simulation is invoked and it completes its initialization procedure,
program control is transferred to the main procedure. The statements in the main
procedure are sequentially executed. Hence, the first two assignment statements
are executed which initialize variables A and B to 3.0 and 7.0 respectively. The
next statement calls the procedure MyProc2. Hence the statements in procedure
MyProc2 begin to execute sequentially. The first two assignment statements in
MyProc2 reassign the values of variables A and B to 4.0 and 5.0 respectively. The
next statement in procedure MyProc2 calls the procedure MyProc1. Consequen-
tially, the procedure MyProc1 is executed which assigns the variable C the value of
9.0 (the sum of variables A and B.) Since procedure MyProc1 only has one state-
ment, program control returns to the procedure that called procedure MyProc1,
i.e. procedure MyProc2. Since procedure MyProc2 does not have any more state-
ments after its call statement, program control returns to the procedure which called
MyProc2, i.e. the main procedure. Execution in the main procedure continues after
the call statement. Hence, the assignment statement which reassigns variable C to
twice its value is executed. At the end of this simulation, the variables A, B, and
C have the values of 4.0, 5.0, and 18.0 respectively.

Conditional Statements

All of the statements discussed thus far, with the exception of procedure calls, exe-
cute sequentially. In other words, the statements are executed in the order in which
they appear in the main procedure. Often it is desirable to execute different state-
ments depending upon the result of some computation or condition. Conditional
statements provide such a mechanism. SGFramework supports IF-THEN and IF-
THEN-ELSE conditional statements. By combining several conditional statements,
it is possible to construct ELSE-IF conditional statements as well. The syntax for
these statements is as follows.

28 User’s Manual

IF ‘(’ condition ‘)’ THEN statement
IF ‘(’ condition ‘)’ THEN statement ELSE statement .
IF-THEN statements begin with the keyword ‘IF’ and are followed by a paren-

thesized condition. After the condition, the keyword ‘THEN’ is specified followed by
one SGFramework procedural statement. Conditions are simply mathematical ex-
pressions. The condition is treated as being TRUE if it evaluates to a nonzero value
and FALSE if it evaluates to zero. The procedural statement is executed only if the
condition is TRUE. IF-THEN-ELSE statements have a similar syntax. Instead of
the statement terminating with a procedural statement, the keyword ‘ELSE’ and
another procedural statement are appended. In IF-THEN-ELSE statements, if the
condition is TRUE, the first procedural statement is executed (the one after the
THEN keyword). If the condition is FALSE, the second procedural statement is
executed (the one after the ELSE keyword).

It is often desirable to conditionally execute several procedural statements rather
than one procedural statement. To accommodate this feature, SGFramework allows
several statements to be treated as one by enclosing the statements between the
keywords ‘BEGIN’ and ‘END’. All statements discussed in this section thus far are
valid procedural statements. Furthermore, conditional statements and branching
statements (which will be discussed next) are also valid procedural statements. For
instance, consider the following example.

VAR a, b, c;

IF (a > b) THEN
ASSIGN c = +1.0;

ELSE IF (a < b) THEN
ASSIGN c = -1.0;

ELSE
ASSIGN c = 0.0;

This example compares the values of variables a and b and stores the result in
variable c. If a is greater than b, then the result is positive unity. If a is less than
b, then the result is negative unity. If a and b are equal, then the result is zero.
Notice that in this example, an IF-THEN-ELSE statement is used as the procedural
statement of another IF-THEN-ELSE statement. If the condition ‘a is greater than
b’ is true, then the assignment statement ‘c is set to positive unity’ is executed. If
the condition ‘a is greater than b’ is not true, then the statement that begins with
‘if a is less than b’ is executed.

A slight variation of the use of conditional statements within conditional state-
ments is illustrated in the next example.

VAR a, b, c;

ASSIGN c = 0.0;
IF (a > 0.0) THEN

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 29

BEGIN
IF (b > 0.0) THEN ASSIGN c = +1.0;
ELSE IF (b < 0.0) THEN ASSIGN c = -1.0;

END
ELSE IF (a < 0.0) THEN
BEGIN
IF (b > 0.0) THEN ASSIGN c = -1.0;
ELSE IF (b < 0.0) THEN ASSIGN c = +1.0;

END

These statements check the sign of variables a and b and store the result in
variable c. If either a or b is zero, then the result is zero. If a and b are both
positive or both negative numbers, then the result is positive unity; otherwise, the
result is negative unity. In this case, we wanted the first IF-THEN-ELSE statement
to execute if a is greater than zero and the second IF-THEN-ELSE statement to
execute if a is less than zero. Therefore, these conditional statements had to be
enclosed by the ‘BEGIN’ and ‘END’ keywords. Otherwise, it would not be clear
whether the first ‘ELSE’ keyword should be associated with the first or second ‘IF’
keyword.

Looping Statements

The last type of procedural statements are looping statements. Looping statements
allow any procedural statement (or a group of procedural statements if they are
enclosed by the BEGIN and END keywords) to be executed repeatedly as long
as some condition remains TRUE. SGFramework supports two types of looping
statements: WHILE statements and DO-WHILE statements. The syntax of these
commands is as follows.

WHILE ‘(’ condition ‘)’ statement
DO statement WHILE ‘(’ condition ‘)’ ‘;’
WHILE statements begin with the keyword ‘WHILE’ and are followed by a

parenthesized condition and a procedural statement. As long as the condition re-
mains TRUE, then the procedural statement will be executed over and over. If
the condition becomes FALSE, then the procedural statement is skipped and the
procedural statement which immediately follows the entire WHILE statement is
executed.

DO-WHILE statements begin with the keyword ‘DO’ and are followed by a
procedural statement, the keyword ‘WHILE’, a parenthesized condition and a semi-
colon. Like WHILE statements, the procedural statement will be executed over and
over as long as the condition remains TRUE. The difference between these looping
statements is apparent when the condition is FALSE prior to executing the looping
statement. In the case of a WHILE statement, the procedural statement will never
be executed if the conditional is initially FALSE. However, with the DO-WHILE
statement, the procedural statement will be executed once. Hence the procedural
statement of a WHILE statement may be executed zero or more times and the

30 User’s Manual

procedural statement of a DO-WHILE statement may be executed one or more
times.

In most cases, the procedural statement of a loop will consist of several proce-
dural statements enclosed by the ‘BEGIN’ and ‘END’ keywords. At least one of
the enclosed statements should affect the value of the condition; otherwise, the loop
will never end. SGFramework omits FOR loops, since these may be implemented
with a while statement. The following example will loop through the statements
between the ‘BEGIN’ and ‘END’ keywords ten times. Note, however, that the loop
variable i is a floating-point number and not an integer.

ASSIGN i = 1.0;
WHILE (i < 10.1) BEGIN
statement
statement

...
statement
ASSIGN i = i + 1.0;

END

1.1.11 Numerical Algorithm Parameters

Equation specification files may also specify several parameters. Parameters are
divided into three categories: nonlinear solution algorithm parameters, linear solu-
tion algorithm parameters, and mesh scaling parameters. Parameters are specified
via SET statements. To understand the parameters specified in this example, it is
important to understand how a nonlinear system of algebraic equations is solved.
It is recommended that the reader review section ?? and the sections which follow.

Nonlinear Solution Algorithm Parameters

There are three nonlinear solution algorithm parameters. These parameters specify
the maximum number of Newton iterations, minimum accuracy with which to solve
the simulation’s equations, and the maximum amount of damping that can be
applied to the Newton update vector. This subsection assumes the reader is familar
with the Newton algorithm.

The parameter statement that specifies the maximum number of Newton itera-
tions begins the keywords ‘SET’, ‘NEWTON’, and ‘ITERATIONS’. These keywords
are followed by an equal sign, an integer, and a semi-colon. The integer specifies
the maximum number of Newton iterations. The numerical algorithm module will
continue to iterate, as long as this maximum number of iterations is not exceeded
and the simulation equations have not been solved to the minimum specified accu-
racy (and no error has been detected). The syntax of this parameter statement is
as follows.

SET NEWTON ITERATIONS ‘=’ integer ‘;’
The parameter statement that specifies the minimum accuracy with which to

Sec. 1.1. The Syntax and Grammar of the Equation Specification File 31

solve the simulation’s equations begins with the keywords ‘SET’, ‘NEWTON’, and
‘ACCURACY’. Following these keywords is an equal sign, a floating-point (real)
number, and a semicolon. The floating-point number specifies the minimum accu-
racy. The syntax of this parameter statement is as follows.

SET NEWTON ACCURACY ‘=’ real ‘;’
The parameter statement that specifies the maximum amount by which to

damp the Newton update vector begins with the keywords ‘SET’, ‘NEWTON’,
and ‘DAMPING’. These keywords are followed by an equal sign, an integer, and
a semicolon. The maximum amount of damping is given by the expression 2.0−i

where i will be set equal to the integer mentioned in the previous sentence. The
syntax of this parameter statement is as follows.

SET NEWTON DAMPING ‘=’ integer ‘;’

Linear Solution Algorithm Parameters

There are seven linear solution algorithm parameters. These parameters specify
the linear solution algorithm, the maximum matrix fill level, the conjugate gradient
preconditioner, the maximum number of linear solution iterations, the minimum
accuracy of the linear solution algorithm, the value of the overrelaxation parameter,
and whether to zero the Newton update vector prior to executing the linear solution
algorithm.

The parameter statement that specifies the linear solution algorithm begins with
the keywords ‘SET’, ‘LINSOL’, and ‘ALGORITHM’. These keywords are followed
by an equal sign, the keyword ‘SOR’, ‘PCG’, or ‘GE’, and a semicolon. If the linear
solution algorithm parameter is set to ‘SOR’, then the successive overrelaxation
algorithm is used. If this parameter is set to ‘PCG’, then the preconditioned con-
jugate gradient algorithm is used. Finally, if this parameter is set to ‘GE’, then the
Gaussian elimination algorithm is used. The syntax of this parameter statement is
as follows.

SET LINSOL ALGORITHM ‘=’ SOR ‘;’
SET LINSOL ALGORITHM ‘=’ PCG ‘;’
SET LINSOL ALGORITHM ‘=’ GE ‘;’
The parameter statement that specifies the maximum levels of matrix fill begins

with the keywords ‘SET’, ‘LINSOL’, and ‘FILL’. These keywords are followed by an
equal sign, an integer, and a semicolon. The integer specifies the maximum matrix
fill level. This parameter is only used when the preconditioned conjugate gradient
with an ILU preconditioner or Gaussian elimination algorithm is used as the linear
solution solver. The syntax of this parameter statement is as follows.

SET LINSOL FILL ‘=’ integer ‘;’
SET LINSOL FILL ‘=’ INFINITY ‘;’
The parameter statement that specifies the conjugate gradient preconditioner

begins with the keywords ‘SET’, ‘LINSOL’, and ‘PRECONDITIONER’. These key-
words are followed by an equal sign, the keyword ‘NONE’, ‘DIAGONAL’, or ILU,
and a semicolon. If this parameter is set to ‘NONE’, then no preconditioner is used.

32 User’s Manual

If this parameter is set to ‘DIAGONAL’, then the preconditioner is the matrix whose
diagonal elements are dii = ∂Fi/∂xi (where Fi represents the ith equation and xi

represents the associated variable) and whose off diagonal elements are zero. If this
parameter is set to ‘ILU’, then the preconditioner is the incomplete LU factored
Jacobian matrix. This parameter is only used when the preconditioned conjugate
gradient is the linear solution solver. The syntax of this parameter statement is as
follows.

SET LINSOL PRECONDITIONER ‘=’ NONE ‘;’
SET LINSOL PRECONDITIONER ‘=’ DIAGONAL ‘;’
SET LINSOL PRECONDITIONER ‘=’ ILU ‘;’
The parameter statement that specifies the maximum number of linear solution

iterations begins with the keywords ‘SET’, ‘LINSOL’, and ‘ITERATIONS’. These
keywords are followed by an equal sign, an integer, and a semi colon. The integer
specifies the maximum number of linear solution iterations. This parameter is
only used when the successive overrelaxation or preconditioned conjugate gradient
algorithm is the linear solution solver. The syntax of this parameter statement is
as follows.

SET LINSOL ITERATIONS ‘=’ integer ‘;’
The parameter statement that specifies the minimum linear solution accuracy

begins with the keywords ‘SET’, ‘LINSOL’, and ‘ACCURACY’. These keywords
are followed by an equal sign, a floating-point (real) number, and a semicolon. The
floating-point number is the minimum linear solution accuracy. This parameter is
only used when the successive overrelaxation or preconditioned conjugate gradient
algorithm is the linear solution solver. The syntax of this parameter statement is
as follows.

SET LINSOL ACCURACY ‘=’ real ‘;’
The parameter statement that specifies the value of the overrelaxation parame-

ter begins with the keywords ‘SET’, ‘LINSOL’, and ‘OVER’. These keywords are
followed by an equal sign, a floating-point (real) number, and a semicolon. This
parameter is only used when the successive overrelaxation algorithm is the linear
solution solver. The syntax of this parameter statement is as follows.

SET LINSOL OVER ‘=’ real ‘;’
The parameter that specifies whether the Newton vector update is zeroed prior

to executing the linear solution algorithm begins with keywords ‘SET’, ‘LINSOL’,
and ‘ZERO’. The keywords are followed by an equal sign, the keyword ‘YES’ or
‘NO’, and a semicolon. If the value of this parameter is ‘YES’, then the Newton
update vector is zeroed prior to calling the linear solution algorithm. If the value of
this parameter is ‘NO’, then the Newton update vector is not zeroed prior to calling
the linear solution algorithm. This parameter is only used when the successive
overrelaxation or preconditioned conjugate gradient is the linear solution algorithm.
Note, the Newton update vector serves as an initial guess for the indirect linear
solution solvers. The syntax of this statement is as follows.

SET LINSOL ZERO ‘=’ YES ‘;’
SET LINSOL ZERO ‘=’ NO ‘;’

Sec. 1.2. The Syntax and Grammar of the Mesh Specification File 33

Mesh Scaling Parameters

There is only one mesh scaling parameter. This parameter sets the mesh distance
scaling. The mesh distance scaling parameter begins with the keywords ‘SET’ and
‘DIST’. These keywords are followed by an equal sign, a constant expression, and
a semicolon. The constant expression evaluates to the value of the mesh distance
scaling. The syntax of this parameter statement is as follows.

SET DISTANCE ‘=’ const expr ‘;’
This concludes the discussion of the syntax and grammar of equation specifica-

tion files. Following is a discussion of the syntax and grammar of mesh specification
files.

1.2 The Syntax and Grammar of the Mesh Specification File

SGFramework provides the ability to automatically generate and refine hybrid rec-
tangular/triangular two-dimensional meshes based on the specification contained in
an input file. The algorithms and associated data structures are discussed in Chap-
ter ??. This section focuses on describing the syntax and grammar of the mesh
specification file. This section is divided into several subsections: An Overview of
Mesh Specification Files 1.2.1; Comments, Numbers, Identifiers and Constants 1.2.2;
Coordinates 1.2.3; Points 1.2.4; Edges 1.2.5; Regions 1.2.6; Labels; 1.2.7; Refine-
ment Statements 1.2.8; Mesh Parameters 1.2.9; and the Element Refinement Crite-
ria 1.2.10.

1.2.1 An Overview of the Mesh Specification File

SGFramework mesh specification files are usually divided into two sections: the
mesh skeleton and the mesh refinement criteria. The mesh skeleton contains the
minimum amount of information necessary to accurately describe the mesh. The
mesh skeleton consists of a hierarchical declaration of points, edges and regions.
SGFramework performs several data consistency checks and is designed so that ad-
ditional checks may be implemented easily. The mesh refinement criteria specify
the minimum and maximum spacing between nodes, the minimum and maximum
numbers of refinement divisions and the conditions under which to refine (divide)
triangles and/or rectangles. The naming of all of the mesh quantities is important,
since it is the mechanism which links the mesh specification and equation spec-
ification files. The equation specification files were previously referred to as the
specification files.

A very simple mesh skeleton file ‘sq.sk’ was given in Section ??. The discussion
there would serve as a simple introduction to this topic. As a more complete
example, consider the MOSFET mesh specification file listed in Section ??. The
file is duplicated below, for convenience.

// mos.sk

// mesh constants

34 User’s Manual

const WDEV = 2.0e-4; // device width | (cm) | segment 1

const DDEV = 2.0e-4; // device depth | (cm) | segment 2

const WOX = 1.4e-4; // oxide width | (cm) | segment 3

const DOX = 0.2e-6; // oxide depth | (cm) | segment 4

const WCONT = 0.2e-4; // contact width | (cm) | segment 5

const DRECT = 0.2e-4; // depth of rect. region | (cm) | segment 6

// |--5--| |------------3------------| |--5--|

//

// A-------------------------B -

// |\\\\\\\\\\\\\\\\\\\\\\\\\| 4

// - C-----D---E-------------------------F---G-----H -

// 6 | | | | |

// - | I-------------------------J | |

// | | |

// | | 2

// | | |

// | | |

// | | |

// K---L -

//

// |----------------------1----------------------|

// define points

point pA = ((WDEV-WOX)/2, DOX), pG = (WDEV-WCONT, 0.0);

point pB = ((WDEV+WOX)/2, DOX), pH = (WDEV, 0.0);

point pC = (0.0, 0.0), pI = ((WDEV-WOX)/2, -DRECT);

point pD = (WCONT, 0.0), pJ = ((WDEV+WOX)/2, -DRECT);

point pE = ((WDEV-WOX)/2, 0.0), pK = (0.0, -DDEV);

point pF = ((WDEV+WOX)/2, 0.0), pL = (WDEV, -DDEV);

// define edges

edge eAB = GATE [pA, pB] (WOX/20, 0.0);

edge eDE = NOFLUX [pE, pD] (1.0e-7, 0.5);

edge eEF = SISIO2 [pE, pF] (WOX/20, 0.0);

edge eFG = NOFLUX [pF, pG] (1.0e-7, 0.5);

edge eIJ = [pI, pJ] (WOX/20, 0.0);

edge eCD = DRAIN [pC, pD] (WCONT/8, 0.0);

edge eAE = NOFLUX [pE, pA] (1.0e-7, 0.5);

edge eGH = SOURCE [pG, pH] (WCONT/8, 0.0);

edge eBF = NOFLUX [pF, pB] (1.0e-7, 0.5);

edge eCK = NOFLUX [pC, pK] (WCONT/8, 0.5);

edge eEI = [pE, pI] (1.0e-7, 0.5);

edge eHL = NOFLUX [pH, pL] (WCONT/8, 0.5);

edge eFJ = [pF, pJ] (1.0e-7, 0.5);

edge eKL = SUB [pK, pL] (WDEV/5, 0.0);

//define regions

Sec. 1.2. The Syntax and Grammar of the Mesh Specification File 35

region r1 = SIO2 {eAE, eEF, eBF, eAB} RECTANGLES;

region r2 = SI {eEI, eIJ, eFJ, eEF} RECTANGLES;

region r3 = SI {eCK, eKL, eHL, eGH, eFG, eFJ, eIJ, eEI, eDE, eCD};

// define coordinate labels

coordinates x, y;

// physical constants and properties of Si and SiO2

const T = 300.0; // operating temperature

const e = 1.602e-19; // electron charge (C)

const kb = 1.381e-23; // Boltzmann’s constant (J/K)

const e0 = 8.854e-14; // permittivity of vacuum (F/cm)

const eSi = 11.8; // dielectric constant of Si

const eSiO2 = 3.9; // dielectric constant of SiO2

// doping constants

const NS = 1.0e16; // substrate doping (cm^-3)

const NC = 1.0e19; // contact doping (cm^-3)

const WDIFF = (WDEV-WOX)/2; // diffusion width (cm)

const DDIFF = 0.25e-4; // diffusion depth (cm)

const DT = 1.0e-11; // diffusion coef. * time (cm^2)

// doping profile

refine C (SignedLog, 3.0) = (y <= 0.0) * { -NS +

(NC+NS) * nsdep(x, 2*WDIFF,DT) * nsdep(y,2*DDIFF,DT) +

(NC+NS) * nsdep(WDEV-x,2*WDIFF,DT) * nsdep(y,2*DDIFF,DT) };

// set min/max edge spacing and min/max refinement levels

set minimum length = sqrt(e0*eSi*(kb*T/e)/e/abs(C));

set maximum length = 1.0;

set minimum divisions = 0;

set maximum divisions = 20;

1.2.2 Comments, Numbers, Identifiers and Constants

Equation and mesh specification files have similarities in their syntax and grammar.
Both of these specification files allow comments to be placed anywhere in the source
file. Numbers, identifiers, and constants are also common between equation and
mesh specification files.

Comments in mesh specification files are ignored by the mesh specification file
parser. Comments start with the // characters and terminate at the end of the line.
It is a recommended practice to use comments to document and annotate mesh
specification files. Comments are used liberally in the MOSFET mesh specification
file. For example, a series of comments towards the beginning of the example file
provide a schematic of the MOSFET mesh. Furthermore, comments are used to
explain the meaning of the constants declared in the file.

Mesh specification files also support integer and floating-point numbers. Integer

36 User’s Manual

and floating-point expressions are also supported with one exception. Since mesh
specification files do not have variables, all mathematical expressions evaluate to a
constant. For more information about numbers, refer to Subsection 1.1.2.

Identifiers are used in mesh specification files as the names of constants, points,
edges, regions, labels, coordinates, and refinement criteria parameters. As with
equation specification files, certain identifiers are reserved as keywords. For more
details about identifiers, refer to Subsection 1.1.4.

Finally, constants are supported in mesh specification files. The syntax of con-
stants in mesh specification files is identical to the syntax of constants in equation
specification files. The proper use of constants can make a mesh specification more
readable and managable. It is good practice to define geometrical quantities such as
the device width and depth as constants as is done in the sample mesh specification
file. Defining these quantities as constants allows users to easily modify the device
geometry by simply changing the value of the constant. For more information about
constants, refer to Subsection 1.1.6.

1.2.3 Coordinates

In order to access the coordinate values of the mesh points, one must first name
the coordinates using a coordinate statement. Unlike any other mesh specification
file statement, only one coordinate statement is allowed in a mesh specification file.
The syntax of the coordinate statement is as follows.

COORDINATES identifier ‘,’ identifier ‘;’
See Section 1.3.1 for details of how the coordinates of the mesh points are passed

to the equation specification file.
In the MOSFET example, the coordinates are labeled ‘x’ and ‘y’, since the

MOSFET geometry is specified in the Cartesian coordinate system. If the mesh
specification file does not contain a coordinate statement, SGFramework labels the
coordinates ‘x’ and ‘y’.

1.2.4 Points

The basic building blocks of mesh specification files are points. Edges are defined
by points, and regions are defined by edges. A point is defined by two coordinates.
The coordinates are enclosed by parentheses. Each point is given a name which is
an identifier. In the example given here, point names consist of the lowercase letter
‘p’ followed by an uppercase letter. For instance, the first point is named pA and
the last point is named pL. In general, the names of objects must begin with a letter
and may be followed by one or more letters and/or digits. For more information
about naming points, refer to the identifier Subsection 1.1.4. The syntax of the
point definition is as follows.

POINT identifier ‘=’ ‘(’ const expr ‘,’ const expr ‘)’ |‘,’ ... identifier ‘=’ ‘(’ const
expr ‘,’ const expr ‘)’| ‘;’

Sec. 1.2. The Syntax and Grammar of the Mesh Specification File 37

1.2.5 Edges

Edges in SGFramework mesh specification files may either be straight line segments
or circular arcs. A straight line-segment is defined by its two endpoints. A circular
arc is defined by its two endpoints and a third point on the arc. In each case
the points defining the edge are enclosed by brackets. The edges in the example
MOSFET mesh specification file are all straight line-segment edges. Each edge is
given a name. In this example, edge names consist of the letter ‘e’ followed by two
letters which indicate the points at the ends of the edges. This naming, however,
is not dictated by the language. In general, the name of edges may be any legal
identifier (see Subsection 1.1.4).

In addition, an edge may be given a label. For example, in the MOSFET example
file, edge eAB is labeled GATE and edge eCD is labeled DRAIN. Edges without
labels are considered internal edges. Points on an internal edge may be adjusted
to improve the quality of the mesh, whereas points on a labeled edge may not be
nudged. A detailed explanation of labels will be presented in Subsection 1.2.7.

The edge definition may also include an initial node spacing and a grade. The
grid-generation program will use these parameters to control the insertion of points
on the edge. If these parameters are omitted, the grid-generation program will
compute appropriate values for them. For example, edge eAE is a line-segment that
connects points pE and pA. Edge eAE has an initial node spacing of 10 angstroms
(10−7 cm) and a grade of 0.50. This declaration causes the grid generation program
to insert a point on the edge that is 10 angstroms from point pE. The next point
will be spaced 15 angstroms from the previous point or 25 angstroms from point
pE, so that the distance between the first and second nodes is 50 percent larger
than the distance between the first point and point pE.

The syntax of the edge definition is
EDGE identifier ‘=’ |identifier | ‘[’ identifier ‘,’ identifier |‘,’ identifier | ‘]’ |‘(’

const expr ‘,’ const expr ‘)’| |‘,’ ... identifier ‘=’ |identifier | ‘[’ identifier ‘,’ identifier
|‘,’ identifier | ‘]’ |‘(’ const expr ‘,’ const expr ‘)’|| ‘;’

where the two or three identifiers in the square brackets define the endpoints,
and, in the case of a curved circular edge, a third point on the edge. (The third
point on the curve is the middle identifier). Curved edges should not exceed a
quarter circle.

1.2.6 Regions

Regions are defined by a list of three or more edges. The list is enclosed between
braces. The list of edges must form a simple closed curve. Regions include both the
curve and its interior. The interiors of regions cannot overlap; however, regions may
share boundaries (edges). Each region has a name. However, unlike edges where
labels are optional, regions must be given a label. In this example, region names
consist of the letter ‘r’ followed by a number. In general, region names may be any
valid identifier (see Subsection 1.1.4). The edges must be listed in counterclockwise
order in the definition of the region.

38 User’s Manual

By default, regions are divided into triangular elements. Rectangular regions
may be divided into rectangular elements if the opposite sides of the region have the
same initial spacing and grade. The edges of rectangular regions must be parallel
to the coordinate axes. There is one more constraint on rectangular regions. The
opposite edges must ‘point’ in the same direction. For example, consider horizontal
edges of a rectangular region. If the points are ordered from left to right on one of
the edges, the points on the other edge must follow the same ordering. The user
may specify rectangular elements by inserting the keyword ‘RECTANGLES’ at the
end of the region statement.

The syntax of the region definition is
REGION identifier ‘=’ identifier ‘{’ identifier |‘,’ ... identifier | ‘}’ |RECTANGLES|

|‘,’ ... identifier ‘=’ identifier ‘{’ identifier |‘,’ ... identifier | ‘}’ |RECTANGLES|| ‘;’
where the identifiers in the brackets form a list of edges.

1.2.7 Labels

Labels provide links between the mesh specification and equation specification files.
The distinction between names and labels is that names must be unique whereas
the same label can be used to identify several edges and/or regions. For example,
consider the second and third regions. These regions have different names (‘r2’ and
‘r3’) but share the same label (‘SI’). Equation specification files refer to edges and
regions by their labels (such as ‘GATE’ and ‘DRAIN’) while the mesh specifica-
tion refers to points, edges and regions by their names (such as ‘eAB’ and ‘eCD’).
Labels refer to a collection of points. For instance, the label ‘GATE’ refers to all
of the points on the edge ‘eAB’ whereas the label ‘SI’ refers to all of the points in
the regions ‘r1’ and ‘r2’ and on their boundaries. Interfacing mesh and equation
specification files with labels will be discussed in more detail in Subsection 1.3.2.

1.2.8 Refinement Statements

As mentioned in the overview, mesh specification files consist of two parts: a mesh
skeleton and mesh refinement criteria. The mesh skeleton consists of a hierarchy
of points, edges, and regions. From this information, the SGFramework mesh gen-
eration program constructs an initial grid. Often, this grid needs to be refined by
dividing the triangular and/or rectangular elements in certain subdomains. The
refinement criteria are specified by refinement functions.

The syntax of refinement functions is as follows.
REFINE identifier ‘(’ identifier ‘,’ const expr ‘)’ ‘=’ expr ‘;’
Refinement functions consist of a name, two refinement parameters and a body.

The function name is declared after the keyword ‘refine’. The refinement parameters
are enclosed by parentheses and follow the function’s name. The first refinement
parameter is the refinement measure (which may be LINEAR, LOG or SLOG) and
the second is the refinement distance. The body is the expression which follows
the equal sign and may be a function of position. In this MOSFET example, the
body of the refinement statement is the device’s doping profile. The refinement

Sec. 1.2. The Syntax and Grammar of the Mesh Specification File 39

measure may be linear, log or signed log, as defined by equations (1.1), (1.2) and
(1.3) respectively.

Mlin(x) = x (1.1)

Mlog(x) = log (x) (1.2)

Mslog(x) = sign (x) ∗ log (1.0 + |x|) (1.3)

In order to determine whether a triangular or rectangular element should be re-
fined, the mesh refinement program will evaluate the refinement functions at each of
the element’s vertices. If the difference in measure between any two vertices exceeds
the refinement distance, the element is refined. For example, consider the MOS-
FET example. The refinement measure is signed log and the refinement distance
is 4. In order to determine if a triangular element with vertices (x1, y1), (x2, y2)
and (x3, y3) should be refined, the mesh refinement program would first evaluate
the mesh refinement function C at each vertex (Ci = C(xi, yi) for i = 1, 2, 3). It
would then check the measure between the vertices (M12 = |Mslog(C1)−Mslog(C2)|,
M23 = |Mslog(C2)−Mslog(C3)| and M13 = |Mslog(C1)−Mslog(C3)|). If M12 > 4,
M23 > 4 or M13 > 4, then the triangle would be refined. Multiple mesh refinement
functions may be declared. The aforementioned procedure is performed using each
refinement function. The results of these tests are logically OR’ed together. Thus
an element is refined if any one of the tests signifies that it should be refined.

1.2.9 Mesh Parameters

Mesh specification files may also specify several parameters such as the minimum
and maximum number of divisions and the minimum and maximum lengths of edges.
Each triangular or rectangular element in the initial grid is assigned a division level
of zero. If an element is refined, then the resulting elements are assigned the division
level of their parent plus one. Thus elements formed from the division of a level-
zero element would have division level one and elements formed from the division
of a level one element would have division level two. The minimum and maximum
division parameters set the minimum and maximum number of divisions through
which an element may be refined. The syntax of the statements that set these
parameters is as follows.

SET MINIMUM DIVISIONS ‘=’ const expr ‘;’;
SET MAXIMUM DIVISIONS ‘=’ const expr ‘;’;
The minimum and maximum edge lengths may be functions of position. Fur-

thermore, the maximum edge length may be specified independently in both coor-
dinates. The minimum edge length in the MOSFET example is set to the Debye
length. The maximum edge length is set to one micron in this example. The syntax
of the these parameters is as follows.

SET MINIMUM LENGTH ‘=’ expr ‘;’;
SET MAXIMUM LENGTH ‘=’ expr ‘;’;
SET MAXIMUM identifier LENGTH ‘=’ expr ‘;’;

40 User’s Manual

Note that the identifier in the last syntax statement is the name of a coordi-
nate label. Furthermore, the expressions which define the minimum and maximum
lengths may be functions of position.

1.2.10 Element Refinement Criteria

The following rules are used in the order shown to determine whether an element
should be refined. Once a decision has been reached, the remaining rules are not
invoked for that element. An element can be refined only once on each pass over
the mesh.

1. If two or more of the element’s edges have been divided by the refinement of
adjacent elements, then the element is divided.

2. If an element’s division level is less than the minimum division level specified
in the mesh input file, then the element is divided.

3. If the element’s division level is greater than the maximum division level
specified in the mesh input file, then the element is not divided.

4. If any of the lengths of the element’s edges is larger than the maximum edge
length specified in the mesh input file, then the element is divided.

5. If all of the lengths of the element’s edges are smaller than the minimum edge
length specified in the mesh input file, then the element is not divided.

6. If the criteria based on the refinement functions are not satisfied as discussed
above, then the element is divided.

1.3 Interfacing the Equation and the Mesh Specification Files

In order to implement a finite-difference scheme, one needs to know how the mesh
nodes are connected. In other words, each node must know who are its neighbors.
This problem is trivial with rectangular meshes, since the simulation variables may
be stored in multidimensional arrays which reflect the mesh geometry. Since, in
general, the nodes of irregular meshes are not stored in any predictable order, it is
not convenient to store the simulation variables in multidimensional arrays. With
irregular meshes, the simulation variables are usually stored in one-dimensional
arrays. In addition, one usually explicitly stores the mesh connectivity (lists of
neighboring nodes for each node).

This section discusses the SGFramework language constructs that are used to in-
terface the mesh and equation specification files. Specifically, this section describes
the equation specification file extensions, such as mesh connectivity functions, that
allow a user to write a simulation using an irregular mesh. This section is di-
vided into five subsections: Importing an Irregular Mesh 1.3.1, Using Labels in
Equation Specification Files 1.3.2, Mesh Connectivity Functions 1.3.3 and Mesh

Sec. 1.3. Interfacing the Equation and the Mesh Specification Files 41

Geometry Functions 1.3.4, Mesh Summation Functions 1.3.5, and Precomputed
Functions 1.3.6.

1.3.1 Importing an Irregular Mesh

In order to write a simulation using an irregular mesh, the equation specification
file must first import the mesh via the mesh statement. The syntax of the mesh
statement is as follows.

MESH string ‘;’
The mesh statement consists of the keyword ‘mesh’ followed by a string and a

semicolon. The string is the name of the mesh to import.
Importing a mesh does several things. First of all, it imports all of the constants

in the mesh specification file from which the mesh was generated. In order words,
it allows the author of equation specification files to use the constants that are
defined in the mesh specification file of meshes they import. For example, the
example MOSFET mesh specification file declares the constants WDEV and DDEV.
These constants define the width and depth of the MOSFET respectively. Any
equation specification file that imports the mesh generated from the MOSFET
mesh specification file can use constants WDEV and DDEV in the statements that
follow the mesh statement.

Secondly, importing a mesh implicitly declares three additional constants: NODES,
EDGES, and ELEMENTS. These constants define the number of nodes, edges, and
elements (both triangular and rectangular) that are present in the imported mesh.
These constants are often used to declare the number of elements in an array. For
instance, suppose we wanted to write a simulation that computes the electrostatic
potential of a MOSFET whose geometry and doping profile is defined by the exam-
ple MOSFET mesh specification file. To do so, we would first import the MOSFET
mesh using the mesh statement. We would then declare an array which would store
the electrostatic potential at each node on the mesh. To do this, we need to know
how many nodes the mesh contains. Thus, we use the NODES constant as shown
in the following statements.

mesh "mosfet.msh";

var V[NODES]; // array V stores the electrostatic potential

Thirdly, importing a mesh imports all of the labels of the mesh specification file
from which the mesh was created. Labels represent a collection or list of nodes.
For instance, importing the the mesh generated from the example MOSFET, would
import the labels GATE, NOFLUX, SISIO2, DRAIN, SOURCE, SUB, SI02, and
SI. The label GATE represents a list of nodes which are on the edge labeled GATE.
The label SI02 represents a list of nodes which are in and on the boundary of the
region labeled SI02. The use of labels in equation specification files is discussed in
Subsection 1.3.2.

Finally, importing a mesh imports some arrays. All of these imported arrays are
one-dimensional and the number of elements in each array is equal to the number

42 User’s Manual

of mesh nodes. At least two arrays will be imported. The names of these two arrays
will be the names given to the coordinate labels in the mesh specification file via
the coordinate statement. The values of the elements of these arrays will be the
positions of the mesh nodes. Furthermore, an additional array will be imported
for each refinement function present in the imported mesh’s specification file. The
names of these arrays will be the names given to the refinement functions. The
values of the elements of these arrays will be the bodies of the refinement functions
evaluated at each mesh point. For example, the example MOSFET mesh specifica-
tion file labels its coordinates ‘x’ and ‘y’. In addition, this file defines one refinement
function named ‘C’ whose body computes the doping profile. When meshes that
are generated from this mesh specification file are imported, three arrays will be
imported whose names are ‘x’, ‘y’, ‘C’. The values of the elements of these arrays
will be the x position, y position, and dopant concentration at each node in the
mesh.

One word of caution needs to be given. Authors of equation specification files
that import meshes should not declare constants, variables, functions, etc. whose
names are identical to the names of the imported constants, labels, or arrays. If
one does do this, a symbol redeclaration error will be generated.

1.3.2 Using Labels in Equation Specification Files

Several equation specification file statements such as known and unknown state-
ments, equation statements, and assignment statements require a range or a loop
when used in conjunction with arrays. The ranges and loops specify a group of
indices that specify to which array elements the statements apply. (see 1.1.7 and
1.1.9).

For instance, consider the example MOSFET equation specification file. Suppose
we want to determine the electrostatic potential throughout the device. As our first
step, we import the mesh and declare an array to store the value of the electrostatic
potential at each node (see Subsection 1.3.1). As our next step, we declare all the
elements of the electrostatic potential array unknown except for the nodes on the
gate, source, and drain contacts. As our final step, we assign the values of the
elements of the electrostatic potential array at the gate, source, and drain contacts
equal to the constants Vgate, Vsource, and Vdrain. The following example shows
the statements which accomplish these steps.

mesh "mosfet.msh";

const Vgate = 2.0;

const Vsource = 0.0;

const Vdrain = 0.0;

var V[NODES]; // array V stores the electrostatic potential

unknown V[all];

known V[GATE], V[SOURCE], V[DRAIN];

Sec. 1.3. Interfacing the Equation and the Mesh Specification Files 43

begin main

assign V[i=GATE] = Vgate;

assign V[i=SOURCE] = Vsource;

assign V[i=DRAIN] = Vdrain;

end

The above example illustrates the use of labels in equation specification files.
Notice that labels, which are defined in the mesh specification file, are used as
ranges. This is possible because ranges represent a group of nodes. One may ask,
‘Why not use a traditional range which specifies a starting index, an ending index,
and a step value?’ The answer is three-fold. First, since we do not know which
nodes reside on the gate, source, and drain contacts, we cannot define a range by
specifying a starting index, an ending index, and a step value. Second, even if
we did know which nodes reside on these contacts, in general, we still could not
specify the starting index, ending index, and a step value because the nodes on any
edge or region are not guaranteed to be sequential. Third, suppose we did know
which nodes reside on the contacts and they could be represented by a range that is
specified by a starting index, an ending index, and a loop. We still would not want
to use this approach, since we would have to change the ranges’ starting indices,
ending indices and step values every time we modified the mesh.

Upon importing an irregular mesh, simulation authors may use labels as ranges
in any equation specification statement that requires a range (or loop, since a loop
contains a range). The syntax of a range is extended as follows.

int expr |.. int expr |: int expr ||
all
identifier
Hence, ranges may be used in known and unknown statements, equation headers,

and assignment statement headers. Ranges provide a convenient way to specify a
group of indices. Furthermore, they allow users to change certain characteristics
of the mesh without having to change the equation specification file that imports
the mesh. For instance, we could change the depth of the example MOSFET mesh
specification file by changing the value of the WDEV constant. Since this change
does not modify the mesh labels, no change would be required in a properly written
equation specification file that imports the MOSFET mesh.

1.3.3 Mesh Connectivity Functions

As mentioned in the introduction to this section, the nodes of irregular meshes, in
general, are not stored in any easily predictable order. Therefore, it is necessary
to explicitly store the mesh connectivity. SGFramework provides two functions to
access this information: node and edge. The syntax of these functions is as follows.

NODE ‘(’ int expr ‘,’ int expr ‘)’
EDGE ‘(’ int expr ‘,’ int expr ‘)’
The mesh connectivity functions begin with the keyword ‘NODE’ or ‘EDGE’

44 User’s Manual

and are followed by a left parenthesis, an integer expression, a comma, another
integer expression, and a right parenthesis. The first integer expression specifies a
mesh node while the second integer expression specifies a neighbor index. Examples
of mesh connectivity functions are node(i,j) and edge(i,j). The function node(i,j)
returns an index to the jth neighbor of the ith node. The function edge(i,j) returns
an index to the edge which connects the ith node to its jth neighbor. This function
does not return the edge which connects the ith and jth node. Note that these
functions are exceptional, in that they return an integer number as opposed to a
floating-point quantity. Hence, node and edge functions may appear in the index
expressions of arrays. For instance, the expression

V[i] - V[node(i,j)]

computes the difference between the values of array elements that correspond to
the ith node and its jth neighbor.

1.3.4 Mesh Geometry Functions

It is often desirable to know geometrical quantities such as the distance between the
ith node and its jth neighbor. One could compute this quantity via the following
expression.

sqrt(sq(x[i]-x[node(i,j)])+sq(y[i]-y[node(i,j)]))

This, however, requires two differences to be computed and three function calls.
Since the distances between a node and its neighbors are often used in simula-
tions, these values have been precomputed and can be accessed via the edge length
function.

SGFramework provides several functions that access certain precomputed geo-
metrical quantities of irregular meshes: the edge length function (elen), the inte-
gration edge length function (ilen), the integration area function (area), and the
partial integration area function (area). The syntax of each of these functions is as
follows.

ELEN ‘(’ int expr ‘,’ int expr ‘)’
ILEN ‘(’ int expr ‘,’ int expr ‘)’
AREA ‘(’ int expr ‘)’
AREA ‘(’ int expr ‘,’ int expr ‘)’
The first integer expression in each function evaluates to a node. The second

integer expression (if it exists) evaluates to a neighbor index. To understand these
functions, consider Figure 1.1. This figure illustrates the quantities that the mesh
geometry function returns. Consider the node that is represented by the solid circle.
An integration ‘box’ is formed by connecting the perpendicular bisectors of the edges
that connect the node to its neighbors. The perpendicular bisectors are refered to as
integration edges. The elen(i,j) function returns the length of the edge that connects
the ith node and its jth neighbor (not the length of the edge that connects the ith

Sec. 1.3. Interfacing the Equation and the Mesh Specification Files 45

Figure 1.1. A schematic diagram illustrating the edge length, integration edge
length, the integration area, and the partial integration area.

and jth nodes). The ilen(i,j) function returns the length of integration edge that
perpendicular bisects the edge that connects the ith node and its jth neighbor. The
area(i) function returns the area of the integration box that contains the ith node.
Finally, the area(i,j) function returns the partial area of the integration box that is
formed by the triangle whose vertices consist of the ith node and the endpoints of
the integration edge discussed in the description of the ilen(i, j) function.1

1The figures in this chapter are reprinted from Computer Physics Communications, Vol. 93,
”Strategies for mesh-handling and model specification within a highly flexible simulation frame-
work”, 179-211, 1995, with permission from Elsevier Science - NL, Amsterdam, the Netherlands.

46 User’s Manual

1.3.5 Mesh Summation Functions

It is often desirable to evaluate and sum an expression over a group of nodes. The
SGFramework language provides two summation functions: the label summation
function (lsum) and the node summation function (nsum). This subsection is di-
vided into three parts. The first part discusses the label summation function. The
second part describes the node summation function. The third part describes which
summation statements may be nested inside other summation statements.

Label Summation Function

Labels represent a group of nodes. The label summation function loops over a group
of nodes represented by a label, evaluates an expression at each node, and sums the
results. The syntax of the label summation function is as follows.

LSUM ‘(’ identifier ‘,’ identifier ‘,’ expr ‘)’
Label summation functions start with the keyword ‘LSUM’ followed by three

comma-separated parameters enclosed by parentheses. The first parameter is an
identifier. This identifier is the name of an index whose value is set to the index
of the summation’s current node. The second parameter is another identifier. This
identifier is the name of a label that specifies the group of nodes the summation
loops over. The last parameter is a mathematical expression. This expression is
evaluated and summed at each node of the specified label. Usually this expression
‘is a function of’ the specified index. By ‘is a function of’, we mean that the specified
index appears in the mathematical expression.

Node Summation Function

Whereas the label summation functions loops over a group of nodes represented by
a label, the node summation function loops over the neighbors of a specified node.
The syntax of the node summation function is as follows.

NSUM ‘(’ int expr ‘,’ identifier ‘,’ identifier ‘,’ expr ‘)’
NSUM ‘(’ int expr ‘,’ identifier ‘,’ ALL ‘,’ expr ‘)’
Node summation functions start with the keyword ‘NSUM’ followed by four

comma-separated parameters enclosed by parentheses. The first parameter is an
integer expression that evaluates to the node whose neighbors are looped over. The
second parameter is an identifier. This identifier is the name of an index whose value
is set to the index of the summation’s current node. The third parameter is either
an identifier which is the name of a label or the keyword ‘ALL’. If this parameter
is a label, then it filters the nodes over which the summation loops. Only those
neighbors that are part of the group represented by the specified label are included
in the summation. If this parameter is the keyword ‘ALL’, then all of the neighbors
are included in the summation. The last parameter is a mathematical expression.
This expression is evaluated and summed at each allowed neighbor. Usually this
expression ‘is a function of’ the node given by the first parameter and the index
specified by the second parameter. By ‘is a function of’, we mean that these indices
appear in the mathematical expression.

Sec. 1.3. Interfacing the Equation and the Mesh Specification Files 47

Nesting Summation Functions

The last parameter of both summation functions is a mathematical expression. In
general, one is not allowed to nest summation functions. In other words, one can
not include another summation function in a summation function’s expression. The
only exception to this rule is that node summation functions may be nested in label
summation functions.

To illustrate summation functions, consider a simulation which imports a mesh
generated from the example MOSFET mesh specification file. Suppose this simu-
lation solves for the MOSFET’s electrostatic potential (V), electron concentration
(n), and hole concentration (p) at each node of the mesh. The simulation declares
user-defined functions which return the electron and hole current densities. The
following code computes the MOSFET drain’s current per unit length.

mesh "mosfet.msh";

func Jn(n1,n2,V1,V2,<h>)

...

func Jp(p1,p2,V1,V2,<h>)

...

var V[NODES], n[NODES], p[NODES];

...

begin main

call Initialize;

solve;

assign I = lsum(i,DRAIN,nsum(i,j,SI,ilen(i,j)*

{Jn(n[i],n[node(i,j)],V[i],V[node(i,j)],elen(i,j))+

Jp(p[i],p[node(i,j)],V[i],V[node(i,j)],elen(i,j))}));

end

1.3.6 Precomputed Functions

Since a significant portion of the simulation time may be spent evaluating the
elements of the Jacobian matrix, it is desirable to make this process as efficient
as possible. One manner in which this may be accomplished is by eliminating
redundant calculations by storing intermediate values in memory. To this end, the
SGFramework language provides a mechanism that allows user-defined functions
(and their partial derivitives with respect to their arguments) to be precomputed
and stored in arrays for quick retrieval. Precomputation of user-defined functions
is performed prior to constructing the Jacobian matrix or the function vector. It
should be noted that function precomputation is only supported in simulations
where SGFramework meshes are imported. This subsection is divided into two
parts. The first part describes how to specify precomputed functions and the second
part describes how to use precomputed functions.

48 User’s Manual

Specifying Precomputed Functions

After a user-defined function has been declared, it may be tagged for precompu-
tation via precompute statements. Not all user-defined functions may be precom-
puted. Precomputation is limited to user-defined functions that compute a value
at a mesh node or a mesh edge. Specifying precomputation for each of the types of
user-defined function will be discussed individually.

Specifying Node Precomputed Functions Precompute statements for user-defined
functions that compute a value at a node begin with the keyword ‘PRECOMPUTE’
and are followed by an ‘at’ (@) symbol, the keyword ‘NODE’, an identifer, an ar-
row, a function, and a semicolon. The identifier is the name of a node index which
may be used by specified user-defined function’s arguments. The syntax of these
precompute statements is as follows.

PRECOMPUTE ‘@’ NODE identifier ‘->’ function ‘;’
Examples of precompute statements for user-defined functions that compute a

value at a node are given below.

var V[NODES], n[NODES], p[NODES], C[NODES], tn[NODES], tp[NODES];

func MUn(<N>,<T>,pn)

...

return MUl*{1.025/[1+pow(X/1.68,1.43)]-0.025}/u0;

func R(n,p,<tn1>,<tp1>)

...

return Rsrh+Raug;

precompute @ NODE i -> MUn(C[i],T,n[i]*p[i]);

precompute @ NODE i -> R(n[i],p[i],tn[i],tp[i]);

The first precompute statement specifies that the user-defined function MUn
should be evaluated at node i with arguments N, T, and pn equal to C[i], T, and
n[i]*p[i] respectively. The last precompute statement specifies that the user-defined
function R should be evaluated at node i with arguments n, p, tn1, and tp1 equal
to n[i], p[i], tn[i], and tp[i] respectively.

Specifying Node Precomputed Functions Precompute statements for user-defined
functions that compute a value at a mesh edge begin with the keyword ‘PRECOM-
PUTE’ and are followed by an ‘at’ (@) symbol, the keyword ‘EDGE’, an identi-
fer, a parenthesized list of two comma-separated identifiers, the keyword ‘ODD’ or
‘EVEN’ an arrow, a function, and a semicolon. The first identifier is the name of a
edge index. The second and third identifiers, which are parenthesized, specify the
two nodes on the ends of the edge. These identifiers may be used by a specified
user-defined function’s arguments. The keywords ‘ODD’ or ‘EVEN’ specify that
the user-defined function is either an odd or even function with respect to the order
of the nodes. The syntax of these edge precompute statements is as follows.

Sec. 1.3. Interfacing the Equation and the Mesh Specification Files 49

PRECOMPUTE ‘@’ EDGE identifier ‘(’ identifier ‘,’ identifier ‘)’ ODD ‘->’
function ‘;’

PRECOMPUTE ‘@’ EDGE identifier ‘(’ identifier ‘,’ identifier ‘)’ EVEN ‘->’
function ‘;’

Examples of precompute statements for user-defined functions that compute a
value at an edge are given below.

var V[NODES], n[NODES], p[NODES], C[NODES], tn[NODES], tp[NODES];

func E(V1,V2,<h>)

return -grad(V1,V2,h);

func Jn(n1,n2,E,un1,un2,<h>)

...

return un*(n*E+dndx);

precompute @ EDGE i (j,k) ODD -> E(V[j],V[k],elen);

precompute @ EDGE i (j,k) ODD ->

Jn(n[j],n[k],@E(i,j,k),@MUn(j),@MUn(k),elen);

The first precompute statement specifies that the user-defined function E is com-
puted at edge i whose nodes are j and k with arguments V1, V2, and h equal to
V[j], V[k], and elen respectively. The keyword ‘ELEN’ represents the length of edge
i. Note this function is odd, because E(V[j],V[k],elen) = -E(V[k],V[j],elen). The
last precompute statement specifies that the user-defined function Jn is computed
at edge i whose nodes are j and k with arguments n1, n2, E, un1, un2, and h equal
to n[j], n[k], @E(i,j,k), @MUn(j), @MUn(k), and elen respectively. The particu-
lar notation for @E(i,j,k), @MUn(j), and @MUn(k) will be explained in the next
section.

Using Precomputed Functions

Once a function has been specified for precomputation, the precomputed values of
the function may be used in the body of equation statements and in other precom-
pute statements. The syntax of precomputed functions is as follows.

‘@’ identifier ‘(’ int expr ‘)’
‘@’ identifier ‘(’ int expr ‘,’ int expr ‘,’ int expr ‘)’
The first syntax statement is for node precomputed functions. It begins with

an ‘at’ (@) symbol and is followed by an identifier, and a parenthesized integer
expression. The identifier is the name of the node precomputed function and the
integer expression evaluates to the node index.

The second syntax statement is for edge precomputed functions. It begins with
an ‘at’ (@) symbol and is followed by an identifier, and a parenthesized list of
three comma-separated integer expressions. The identifier is the name of the edge
precomputed function and the integer expressions evaluate to the edge and node
indices.

50 User’s Manual

For example, consider the last precompute statement below.

precompute @ EDGE i (j,k) ODD ->
Jn(n[j],n[k],@E(i,j,k),@MUn(j),@MUn(k),elen);

The third, fourth, and fifth arguments of the user-defined function Jn are @E(i,j,k),
@MUn(j), and @MUn(k). @E(i,j,k) represents the precomputed value of the user-
defined function E evaluated at edge i with nodes j and k. @MUn(j) and @MUp(k)
represent the precomputed values of the user-defined functions MUn and MUp eval-
uated at nodes j and k respectively.

As an example of how precomputed functions may be used in an equation state-
ment, consider the SGFramework code below.

equ n[i=SI] ->
+nsum(i,j,all,{@Jn(edge(i,j),i,node(i,j))}*ilen(i,j)) -
@R(i)*area(i) = 0.0;

@Jn(edge(i,j),i,node(i,j)) represents the precomputed value of the user-defined
function Jn evaluated at edge edge(i,j), whose nodes are i and node(i,j).

This concludes the discussion of interfacing the equation and mesh specification
files. We will now turn our attention to the executable programs and scripts which
comprise the SGFramework.

1.4 SGFramework Executables

This section briefly describes the executable programs and scripts that form the
SGFramework. (The SGFramework executables are invoked from a command line,
so Windows95 and NT users must open an MS-DOS prompt to run the SGFrame-
work executables, whereas in UNIX, a shell must be opened.) It should be apparent
that it is all too easy to set up simulations which will fail, for various reasons. If a
simulation does not converge, this may lead to overflows or to domain errors. These
will often be reported as such, or they may cause the simulation to crash.

The SGFramework is schematically represented by Figure 1.4. The circles in the
flowchart represent executable programs and scripts (batch files). This section is
divided into several subsections. Each subsection describes an executable or script,
lists its command-line options, and enumerates the warning and error messages that
the executable may generate.

1.4.1 Build Script

The mesh parser and SGFramework translator produce C++ code. The code
these programs generate must be compiled and linked with either the mesh refine-
ment or SGFramework numerical algorithm module libraries. The SGFramework
build script (sgbuild) facilitates the compiling and linking of the code generated by
SGFramework programs.

Sec. 1.4. SGFramework Executables 51

Figure 1.2. The overall flowchart for the SGFramework.

52 User’s Manual

Command-Line Options

The SGFramework build script accepts two command-line arguments. The first
argument is either ‘ref’ or ‘sim’ and the second argument is the name of the C++
source code to compile and link minus the extension. For instance, to compile the
source code file pin_ref.cpp into a mesh refinement program, we would invoke the
build script as follows.

sgbuild ref pin_ref

If the SGFramework build script is invoked with no or inappropriate command-
line arguments, the following help information is displayed.

SGFramework Build Script Version 1.0 Copyright (c) 1997 Kevin M. Kramer

* USAGE: sgbuild ref filename

* sgbuild sim filename

*

* DESCRIPTION:

* sgbuild ref filename compiles and links the mesh refinement program

* sgbuild sim filename compiles and links the simulation program

*

* REMARKS:

* filename is the mesh refinement or simulation C++ source file name

* without the ’.cpp’ extension.

1.4.2 Mesh Parser

In any simulation which uses a complex mesh, we employ a mesh specification file
to specify both the mesh and the way in which it is to be refined. The mesh
specification file, which has an .sk extension, is parsed by the mesh program. This
program generates a binary file with an .xsk extension and a C++ source file, which
when linked with the mesh refinement library via the SGFramework build script,
creates a mesh refinement program.

Command-Line Options

If the mesh parser (mesh) is invoked with no arguments or the -h command-line
argument, the following help information is displayed.

SGFramework Skeleton Parser Version 1.0 Copyright (c) 1995 Kevin M. Kramer

syntax: mesh [options] file

-h display help screen on the standard output device

-p## floating-point precision where ## = 1 to 16 (default = 6)

Warning and Error Messages

The mesh parser may generate the following warning and error messages. The
format of the messages will be ‘[X] (row, col) message’ where X is either a W for

Sec. 1.4. SGFramework Executables 53

warning, E for error, or F for fatal error; and row and col specify the row and column
index of the place where the error occurred. Sometimes the actual error appears
in the statement which precedes the one that is specified by the row and column
indices. Because an error may cause several errors to follow, it is recommended that
one fix the errors in the order they appear. In the explanation of the warning and
error messages, all messages are referred to as errors even though they may only be
warnings.

string cannot span multiple lines – Strings must begin and end with a double
quote, both characters being on the same line.

unexpected end of file – The equation specification file ended unexpectedly. A
common cause of this error is failure to specify the keyword ‘END’ at the end of
the main procedure.

? expected – This error is caused by syntax errors. The question mark will be
a list of valid characters or keywords that may appear at the specified position in
the input file.

redefinition of symbol ? – The specified symbol has already been defined. For
instance, one cannot define a constant named COUNT, and then declare a variable
named COUNT.

symbol ? not defined – The specified symbol has not been defined. This error
usually occurs when the name of a constant, function, variable, array or procedure
has been misspelled.

? is not a ? symbol – The specified symbol is not of the required type. For
instance, if an array is indexed by an expression enclosed in parentheses, rather than
brackets, this error will occur, since the translator expects functions to be followed
by a parenthesized list of expressions.

? symbol ? not declared – Because of a prior error, the specified symbol of the
specified type has not been declared. This error will usually cause several additional
errors to follow.

? not declared – This error is generated when the specified item (usually a
parameter) has not been declared due to an error. This error usually occurs when
a set statement attempts to initialize an unknown parameter.

coordinates not declared – This error is generated when the coordinates have
not been generated due to an error.

? does not evaluate to a constant – The specified expression does not evaulate
to a constant.

? does not evaluate to positive constant – The specified expression does not
evaluate to a positive constant.

? variable does not evaluate to positive integer constant – The specified expres-
sion does not evaluate to a positive integer constant.

function ? has the wrong number of arguments – The specified function has the
wrong number of arguments.

division by zero in ? – This error is caused when an expression or quantity is
divided by another expression or quantity that evaluates to zero.

54 User’s Manual

domain error in ? function – This error is caused when a function is called
with arguments whose values are outside the domain of the function. For instance,
taking the square root of a negative number will cause a domain error.

overflow in ? function – This error is generated when a precision overflow is
generated.

underflow in ? function – This error is generated when a precision underflow is
generated.

integer overflow – This error is caused when an integer expression evaluates to
a value that is too large to represent as an integer.

cannot open file ? – The specified file cannot be opened.
cannot subdivide region ? into rectangular elements – The specified region

cannot be divided into rectangular elements. Verify that the opposite edges have
equal node spacing and that the edges are parallel to the coordinate axes.

1.4.3 Mesh Generator

The initial coarse grid is generated and plotted (unless specified) from a parsed
mesh specification file. If a plot is generated, it is necessary to close the window
before the next command can be accepted. Parsed mesh specification files have an
.xsk extension.

Command-Line Options

If the mesh generator (sggrid) is invoked with no arguments or the -h command-line
argument, the following help information is displayed.

SGFramework Grid Generator Version 1.0 Copyright (c) 1995 Kevin M. Kramer

syntax: gridgen [options] file * = default

-h display this help screen

-Oxxx create ASCII output file named xxx

-ee * display errors on the standard error device

-eo display errors on the standard output device

-t+ * exhaustive search for best triangulation

-t- nonexhaustive search wherever appropriate

-i+ increase interior spacing

-i- * do not increase interior spacing

-c+ * use centroid triangulation

-c- do not use centroid triangulation

-g### grade (1.5 to 2.5, default = 1.5)

-s### maximum mesh spacing

-m### minimum permissible quality (default 0.35)

-qe### number of edge enhancement iterations (default 2)

-qn### number of node enhancement iterations (default 2)

-qb### number of edge followed by node enhancement iterations

(default 2)

-vr * visualize mesh rating

-vn no graphics

Sec. 1.4. SGFramework Executables 55

-ps generate a postscript file named grid.ps

-r1 graphics screen resolution 480 x 640

-r2 * graphics screen resolution 800 x 600

-r3 graphics screen resolution 1024 x 768

-aspect keep x and y aspect ratio when plotting

Warning and Error Messages

The mesh generation may generate the following warning and error messages.
out of memory – If this error message occurs, try closing some applications and

try again.
file not found – The parser cannot locate the input file, verify the name and

path of the input file and try again.
cannot create or open file – This error is caused when either the user does not

have permission to open or create a file on the specified directory or the disk is full.
file write error – This error is caused when either the user does not have per-

mission to write on the specified directory or the disk is full.
directory name too long – This error is caused when the directory name is too

long. To remedy this error use a shorter directory name and try again.
all triangulation heuristics failed – The mesh generator is not able to triangulate

the mesh. Verify that each region is specified by a simple, closed counterclockwise
curve, the regions do not overlap, and that the segment spacing changes gradually
(several short segments are not next to a long segment).

1.4.4 Mesh Refiner

In order to refine a mesh, the user must do two things. First the mesh refinement
program must be compiled and linked. Second, the mesh refinement program must
be executed. The mesh refinement program may be compiled and linked using the
SGFramework build script. The mesh refinement source file is generated by the
mesh parser. The name of the mesh refinement source file is ‘xxxx_ref.cpp’ where
‘xxxx’ is the first four characters of the mesh specification file from which the source
file was generated. The mesh refinement program will generate a binary mesh file
whose name is the name of the mesh specification file with a .msh extension. It
may also plot the refined mesh (and the window containing the plot must be closed
before the next command can be entered.)

Command-Line Options

If a mesh refinement program is invoked with no arguments or the -h command-line
argument, the following help information is displayed.

SGFramework Mesh Refiner Version 1.0 Copyright (c) 1995 Kevin M. Kramer

syntax: refine [options] * = default

-h display this help screen

-Oxxx create ASCII output file named xxx

56 User’s Manual

-cyl cylindrical geometry

-dmin### minimum number of divisions

-dmax### maximum number of divisions

-dadj### divide triangles of level < ### if adj. triangle will be

split

-rm?=lin use linear measurement for refinement variable ?

-rm?=log use logarithmic measurement for refinement variable ?

-rm?=slog use signed logarithmic measurement for refinement variable ?

-rd?=### maximum delta for refinement variable ?

-qe### number of edge enhancement iterations (default 2)

-qn### number of node enhancement iterations (default 2)

-qb### number of edge followed by node enhancement iterations

(default

2)

-m### minimum rectangular splitting angle in degrees (default 0)

-g### maximum grade between rectangular elements (default

infinite)

-s### maximum ratio between length and width (default infinite)

-aspect keep x and y aspect ratio

-vr * visualize mesh rating

-vn no graphics

-yz do not apply refinement statements to elements above y = 0

-ps generate a postscript file named mesh.ps

-bw generate grayscale plot

-r1 graphics screen resolution 480 x 640

-r2 * graphics screen resolution 800 x 600

-r3 graphics screen resolution 1024 x 768

Warning and Error Messages

The Warning and Error Messages are:
cannot open file – This error is generated when the specified file could not be

opened.
corrupt grid file – This error is generated when the grid (initial mesh) file is

corrupt. To remedy this error, regenerate the initial mesh.
cannot create file – This error is generated when the specified file cannot be

created.

1.4.5 SGFramework Translator

In order to generate a SGFramework simulation, a user must first translate an equa-
tion specification file via the SGFramework translator (using the command sgxlat).
Then the user must compile and link the translator’s output with a numerical al-
gorithm module via the SGFramework build script (sgbuild).

Sec. 1.4. SGFramework Executables 57

Command-Line Options

If the SGFramework translator (sgxlat) is invoked with no arguments or the -h
command-line argument, the following help information is displayed.

SGFramework Translator Version 1.0 Copyright (c) 1995 Kevin M. Kramer

syntax: sgxlat [options] file

-h display help screen on the standard output device

-p## floating-point precision where ## = 1 to 16 (default = 6)

-nc no coupling between equations

Warning and Error Messages

The SGFramework translator may generate the following warning and error mes-
sages. The format of the messages will be ‘[X] (row, col) message’ where X is either
a W for warning, E for error, or F for fatal error; and row and col specify the row
and column index of the place where the error occurred. Sometimes the actual error
appears in the statement which precedes the one that is specified by the row and
column indices. Because an error may cause several errors to follow, it is recom-
mended that one fix the errors in the order they appear. In the explanation of the
warning and error messages, all messages are referred to as errors even though they
may only be warnings.

string cannot span multiple lines – Strings must begin and end with a double
quote, both characters being on the same line.

unexpected end of file – The equation specification file ended unexpectedly. A
common cause of this error is failure to specify the keyword ‘END’ at the end of
the main procedure.

? expected – This error is caused by syntax errors. The question mark will be
a list of valid characters or keywords that may appear at the specified position in
the input file.

redefinition of symbol ? – The specified symbol has already been defined. For
instance, one cannot define a constant named COUNT, and then declare a variable
named COUNT.

symbol ? not defined – The specified symbol has not been defined. This error
usually occurs when the name of a constant, function, variables, array or procedure
has been misspelled.

? is not a ? symbol – The specified symbol is not of the required type. For
instance, if an array is indexed by an expression enclosed in parentheses, rather than
brackets, this error will occur, since the translator expects functions to be followed
by a parenthesized list of expressions.

? symbol ? not declared – Because of a prior error, the specified symbol of the
specified type has not been declared. This error will usually cause several additional
errors to follow.

? statement not declared – Because of a prior error, the specified statement of
the specified type has not declared. This error may cause several additional errors
to follow.

58 User’s Manual

user-defined function ? not declared – Because of a prior error, the specified user-
defined function was not declared. This error will usually cause several additional
errors to follow.

? does not evaluate to a constant – The specified expression does not evaulate
to a constant.

array ? has too many dimensions – The specified array has too many dimensions.
This error is generated if an array is declared that has over three dimensions.

dimension ? of array ? does not evaluate to a integer constant – The specified
dimension of the specified array does not evaulate to an integer constant.

dimension ? of array ? is not an integer expression – The specified dimension
of the specified array is not an integer expression.

dimension ? of array ? must be greater than zero – The specified dimension of
the specified array must evaulate to an integer that is greater than zero. In other
words, one cannot declare an array with zero or a negative number of elements.

dimension ? of array ? is out of bounds – The specified dimension of the specified
array is out of bounds. In other words, the expression evaluates to an integer which
is less than zero or greater than the number of elements in the specified dimension
minus one.

array ? has the wrong number of dimensions – The specified array has the wrong
number of dimensions. For instance, if a two-dimensional array is declared, the use
of this array must be accompanied by a bracketed list of two-index expressions.

function ? has the wrong number of arguments – The specified function has the
wrong number of arguments.

? value of index ? does not evaluate to an integer constant – the start, end, or
step value of the specified index does not evaluate to an integer constant.

? value of index ? is illegal – the start, end, or step value of the specified index
is illegal.

equation corresponding to ? ? is useless – The equation corresponding to the
specified variable or array is not used because the variable or the unknown elements
of the specified array are already associated with one or more equations.

equation corresponding to ? ? has no pivot – The equation corresponding to
the specified variable or array has no pivot. This error results when the variable
or array elements specified by the equation header do not appear in the equation’s
expression.

no main procedure statements specified – The equation specification does not
have the mandatory main procedure.

no equation statements specified – No equation statements are declared in the
equation specification file yet a solve statement is present.

division by zero in ? – This error is caused when an expression or quantity is
divided by another expression or quantity that evaluates to zero.

domain error in ? function – This error is caused when a function is called
with arguments whose values are outside the domain of the function. For instance,
taking the square root of a negative number will cause a domain error.

Sec. 1.4. SGFramework Executables 59

overflow in ? function – This error is generated when a precision overflow is
generated.

underflow in ? function – This error is generated when a precision underflow is
generated.

integer overflow – This error is caused when an integer expression evaluates to
a value that is too large to represent as an integer.

corrupt or missing mesh file – The specified mesh file is either corrupt or missing.
To remedy this error, regenerate the mesh file.

near singularity encountered – This error is generated when the absolute value
of a pivot is less than the specified ‘near singularity’ quantity.

unknown ? does not have a corresponding equation – The unknown variable or
array element does not have a corresponding equation. Either add an equation or
equations to the equation specification file or declare this variable or array element
to be known.

underspecified system of equations – The system of equations is underspecified.
A common cause of this error is when one equation is just a multiplicative constant
times another equation.

overrelaxation parameter not in range [1.0, 2.0] – The overrelaxation parameter
is not within its required range of 1.0 to 2.0.

symbol ? is not allowed in user-defined function body – The specified symbol is
not allowed in the body of a user-defined function. A common cause of this error
is using a variable or array element in the function’s body.

function ? may not call itself – This error is called when a function tries to
recursively call itself. Recursion is not supported by the SGFramework translator.

a file must be open for ? prior to using this statement – This error is generated
when the specified statement is used prior to opening an input or output file.

file already open, must issue a close statement – The SGFramework only sup-
ports one open file at a time. If the user tries to open a second file prior to closing
the first file, this error will be generated.

cannot open file ? – The specified file cannot be opened.
the data file has not been closed – An open data file has not been closed prior

to exiting the simulation.
unexpected end of data file – The end of a data file has been unexpectedly

reached. A common cause of this error is searching for a label that does not exist
in the data file.

syntax error in data file – A syntax error was encountered in the data file.
could not find label ? in data file – The specified label was not found in the

data file.
main procedure already declared – An additional main procedure is present in

the equation specification file.
? is not an integer expression – The specified expression is not an integer ex-

pression.
? function cannot contain another ? function – The first specified function

cannot contain the second specified function. This error is usually caused by trying

60 User’s Manual

to nest a summing function inside another summing function.
irregular mesh has not been declared – This error is generated when a mesh

connectivity function or mesh geometry function is used but a mesh has not been
imported.

the ? operator cannot be used in edge precompute statements – The specified
operator cannot be used in edge precompute functions.

cannot determine if argument is odd or even w/ respect to its indices – This error
is generated when the SGFramework translator cannot determine if an argument of
a function is odd or even with respect to its indices.

1.4.6 Ordering Module

In order to increase the speed and reduce the memory requirements of SGFrame-
work simulations, a user should order a simulation’s unknown variables and array
elements via the SGFramework minimum degree ordering program (order). The
ordering program requires two command-line arguments: a SGFramework topology
file and a SGFramework permutation file. The SGFramework topology file is gen-
erated by the SGFramework translator. The SGFramework permutation file will be
generated by the ordering program.

Command-Line Options

If the minimum degree ordering program (order) is invoked with no arguments or
the -h command-line argument, the following help information is displayed.

Minimum Degree Order Version 1.0 Copyright (c) 1995 Kevin M. Kramer

usage: order [options] topfile permfile

-h display this help screen

-q run quietly

-Pxxx generate a SMMS permutation vector named xxx

Warning and Error Messages

The Warning and Error messages are:
cannot open file ? – This error is generated when the specified file cannot be

opened.
cannot create file ? – This error is generated when the specified file cannot be

created.

1.4.7 SGFramework Simulations

SGFramework simulations are built by compiling and linking the code generated by
the SGFramework translator with an appropriate numerical algorithm module.

Command-Line Options

If the simulation is invoked with the -h command-line argument, the following help
information is displayed.

Sec. 1.4. SGFramework Executables 61

SGFramework Simulation, SimGen Copyright (c) 1994 K. M. Kramer

-h display this help screen

-vs0 run quietly, i.e. do not output convergence information, etc.

-vs1 output abbreviated convergence information

-vs2 output full convergence information

-vl1 output abbreviated convergence information to log file

-vl2 output full convergence information to log file

-z+ zero the dx vector prior to each iteration

-z- do not zero the dx vector prior to each iteration

-Lxxx generate log file xxx

-i## maximum number of Newton iterations

-a## minimum Newton accuracy

-d## minimum error-reducing damping factor (min. df = 2^-##)

-e## maximum percentage change per Newton iteration

-s## near singularity value

-li## maximum number of SOR, PCG, etc. iterations

-la## maximum SOR, PCG, etc. accuracy

-lf## maximum fill level for Gaussian elimination (## > 5 = infinity)

-lr## over-relaxation parameter

-lsor use successive over-relaxation algorithm

-lge use Gaussian elimination algorithm

-p## ASCII output precision for real numbers

-n## use ## norm (## = inf for infinite norm)

Warning and Error Messages

The Warning and Error messages are:
cannot open file ? – This error is generated if the specified file cannot be opened.
cannot find label ? in data file ? – This error is generated if the specified label

cannot be found in the specified file.
syntax error in data file ? – This error is generated when a syntax error is

encountered in the specified data file.
unexpected end of file in data file ? – This error occurs if the end of the specified

data file is unexpectedly encountered. A common cause of this error is searching
for a label that either does not exist or is present only before the location of the file
pointer.

near singularity encountered – This error is generated when the absolute value
of a pivot is less than the specified ‘near singularity’ quantity.

1.4.8 Extract Program

The binary-to-ASCII extraction program (extract) is used to extract data from
a binary SGFramework result file. The data is written to ASCII files which are
labeled by the name of the array whose value they contain. All variables are stored
by the main program in a single file. The extension of these data files is determined
by which snapshot of data is extracted. The command-line syntax of the extract
program is as follows.

62 User’s Manual

extract filename.res i
The number i is an integer that indicates that the ith set of data which was

written to the .res file is to be extracted. Examples of shell scripts set up to perform
the extraction are given in the text - see Section ??.

1.4.9 Group Program

The data file format program (group) is used to format unformatted data files gener-
ated by a SGFramework simulation. Often, several variables are repeatedly written
to a data file. For instance, the mixed-mode simulation listed in Section ?? writes
the variables t, dt, Vs, Vb, Vc, Vd, Vl, Ib, Ic, Il, and Id to the data file mm02.out
at each time step via the file write statement. Since the file write statement outputs
each variable on its own line, it is very difficult to analyze the data file mm02.out.
A portion of the mm02.out file is shown below.

0

1e-09

12

0.5988724

24

4.572742e-07

The first number, 0, corresponds to t; the second number, 10−9, corresponds to
dt, and so on. It would be very hard to determine to what variable the hundredth
or thousandth number corresponded. However, by using the group program, one
can organize the data file into a list of columns. For example, consider the following
invocation of the group program.

group t dt Vs Vb Vc Vd Vl Ib Ic Il Id <mm02.out >mm02.tab

The above example will group the data in the file mm02.out into eleven columns
named t, dt, Vs, Vb, Vc, Vd, Vl, Ib, Ic, Il, and Id. (The command-line arguments
are taken as the names of the columns, hence the number of command-line argu-
ments is the number of columns into which the data is organized.) The SGFrame-
work data file is redirected to the standard input device via the < symbol. The
output, which is the organized (grouped) data, is redirected to the file mm02.tab.
A portion of mm02.tab is shown below. Note that only the first five columns are
shown.

t dt Vs Vb Vc

0.00000e+00 1.00000e-09 1.20000e+01 5.98872e-01 2.40000e+01

Sec. 1.4. SGFramework Executables 63

1.00000e-09 1.50000e-09 1.19760e+01 5.98818e-01 2.57290e+01

2.50000e-09 2.25000e-09 1.19400e+01 5.98736e-01 2.77730e+01

4.75000e-09 3.37500e-09 1.18860e+01 5.98613e-01 3.05299e+01

8.12500e-09 5.06250e-09 1.18050e+01 5.98427e-01 3.40187e+01

1.31875e-08 7.59375e-09 1.16835e+01 5.98146e-01 3.73361e+01

2.07812e-08 1.00000e-08 1.15013e+01 5.97718e-01 3.92992e+01

1.4.10 Graphical Output

The SGFramework provides mechanisms by which to view and print SGFramework
meshes. Both the mesh generation program and the mesh refinement programs are
capable of generating mesh plots. Furthermore, if these programs are invoked with
the -ps command-line argument, these programs can generate postscript files of the
mesh. These postscript files may be viewed and printed with postscript viewing
applications.

Because it is not possible, in general, to solve semiconductor problems on reg-
ular meshes, and because most plotting software is only useful for regular meshes,
SGFramework has its own plotting capabilities. The SGFramework surface plotter
(triplot) is capable of plotting the results of a SGFramework simulation that used
a mesh specification file. triplot requires one command-line argument, the name of
a SGFramework result file without the extension. In addition, the user may specify
an array to plot. The array must be one-dimensional and have as many elements
as the mesh has nodes. If the name of an array is not specified on the command
line, the user will be prompted to enter an array. Finally, the user may specify
optional command-line arguments. For instance, -log plots the log of the values of
the specified array (to be precise, sign(x)*log(abs(x))) , -az specifies the azimuthal
viewing angle of the plot, etc.

The SGFramework also contains another graphing program (sgplot). sgplot is
similar to triplot in that it generates surface plots on irregular meshes. However,
sgplot can also produce contours and it provides axes with tick marks. Invoke sgplot
with the -h command line argument for instructions.

To make a postcript file of the results, the command line option -ps should be
specified. The postcript file will have the same name as the simulation, with a ‘.ps’
on the end. In this book, for example, this command was used to plot the voltage
from the simulation file pn05.sg. The command thus read

triplot pn05 V -ps

In this case, the SGFramework surface plotting program will generate a post-
script file named pn05.ps. If there is more than one set of data (say from multiple
time steps) the -i### command-line option should be specified to choose which
data set to use. For instance, -i1 uses the first data set, -i2 the second, and so on.
If the -i### command line option is not specified, the default is to use the first
data set. This plotting routine makes use of a SGFramework mesh file, so it will
not work in cases where we did not generate such a file.

64 User’s Manual

Command-Line Options

If the SGFramework surface plotter (triplot) is invoked with no arguments or the
-h command-line argument, the following help information is displayed.

SGFramework Surface Plotter Version 1.0 Copyright (c) 1995 Kevin M. Kramer

syntax: refine filename [array] [options] * =

default

-h display this help screen

-i### use the ###’th data set (default 1)

-az### azimuthal angle (default 30)

-el### elevation angle (default 60)

-ps generate a postscript file

-wf wire frame

-bw black and white (grayscale) plot

-nm do not plot the mesh

-lin * use a linear scale

-log use a logarithmic scale

-r1 graphics screen resolution 480 x 640

-r2 * graphics screen resolution 800 x 600

-r3 graphics screen resolution 1024 x 768

Warning and Error Messages

cannot open file ? – This error is generated when the specified file cannot be opened.

