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Copyright Notice of the GSS software
The GSS software, is covered by the following BSD (or MIT) type license:

Copyright (c) 2005-2007 by Gong Ding and 2008 by GeniEDA Corp.

This software is provided "as is" without express or implied warranty to the extent
permitted by applicable law. In no event will the authors be held liable for any
damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely. If you use this
software in a product, an acknowledgment in the product documentation would
be appreciated but is not required.

This notice may not be removed or altered from any source distribution.

Copyright Notice of the GSS User’s Guide
The document itself, is covered by the GNU Free Documentation License.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation, with no Invariant Sections, no Front-
Cover Texts, and one Back-Cover Text: "GeniEDA Inc. asks for your support
through buying the hard copy." A copy of the license is included in the section
entitled "GNU Free Documentation License".
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Chapter 1 Introduction to GSS
Software

1.1 Overview
GSS (General-purpose Semiconductor Simulator) is an open source 2D device
simulator for the numerical simulation of semiconductor devices. Based on the
well established methods of drift-diffusion (DD) and energy balance (EB), GSS
can calculate the intrinsic physical variables of a semiconductor device (such as
potential and carrier concentrations), as well as terminal currents and voltages.
With a carefully designed device model and well calibrated parameters, GSS can
be used to reliably predict the electrical characteristics of real semiconductor de-
vices prior to manufacture.

1.1.1 History
The original author of the code, Gong Ding, has been developing GSS since 2004
and first published the code into the public domain in 2006. GSS continues to
be actively developed and maintained by Gong Ding and Li Yisuo. In 2008, the
GeniEDA Corp was founded to offer greater support to GSS users and to further
develop the code as a serious alternative to commercially available products. At
the same time, the GENIUS project was initiated to develop an open-sourced 3D
parallel process and device simulator.

1.1.2 Why Chosen GSS
Here are some great reasons for choosing GSS over other available programs:

• GSS open source is free, but it is most definitely not a toy. At its present
stage of development, GSS offers around 70 to 80% of the functionality to
be found in the leading commercial products. Since the software structure is
so well organized and incorporates a number of advanced technologies, GSS
has the potential to become a world class 2D simulator.

• The source code is made available to user, thus rendering the calculation
of numerical solutions transparent and open to detailed inspection. Fur-
thermore, there are no limitations in modifying and redistributing the code
except as defined by the BSD license which covers this work.

• The technical support for this product is based at source code level, which
offers more possibilities when seeking solutions to different problems.

• The physical model, as well as the numerical arithmetic, is described in
detail in this manual. It is strongly recommended and intended that serious
users should read this material carefully.

1.1.3 Basic Numerical Arithmetic
Currently, GSS offers four solvers with different levels to meet the different de-
mands of device simulation.
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1.1 Overview Chapter1. Introduction to GSS Software

Traditional device such as diodes, bipolar transistors and long gate (> 1 µm) MOS
Level 1 DDM transistors can be numerically analyzed by level one DD solver. For this solver,

Poisson’s equation and both the electron and hole current continuity equations
are solved self-consistently by a full Newton’s scheme.

For a power transistor or device, Joule heating can not be neglected. In order to
Level 2 DDM take this effect into account, the level two DD solver considers an extra lattice

temperature equation. At this level, GSS is self-consistently solving four equa-
tions.

GSS simulates the behavior of deep submicron devices such as advanced bipolar
Level 3 EBM and CMOS transistors by solving the electron and hole energy balance equations

self-consistently with the other device equations in a level three energy balance
solver. Up to six equations are solved in a fully coupled model by Newton’s
scheme. Effects such as carrier heating and velocity overshoot are accounted for
and their influence on device behavior can be analyzed.

For simulation of deep submicron and nanometer MOS devices, the density gra-
Quantum DDM dient model (which based on the lowest moments of the Wigner Function) is

integrated into GSS. For this model, three basic DD equations plus two quantum
potential equations are solved consistently.

1.1.4 Dynamic Loadable Library for Physical Models
Through GSS’s highly flexible interface, the user can add support for new mate-
rials or modify the default physical models to their own configuration. Instead of
hard coding the physical models and parameters into one binary file, GSS loads
information about materials from a separate dynamic loadable library (a shared
object format for the Linux/Unix system). This mechanism has several advan-
tages:

• Run time efficiency is superior when compared to reading in information
through a script interpreter1.

• Adding support for new materials is clearly delineated and separate from
other areas of the code, thus making debugging infinitely easier.

• Automatic differentiation can be employed to reduce the workload. Please
refer to the following paragraph.

• Intellectual property can be shared with others without exposing proprietary
models or critical parameters by pre-compiling it into a dynamic library.

+ Note:

Currently, GSS does not offer a way for adjusting default parameters from the
input deck. In order to do this, it remains necessary to modify the material library
source code and then recompile it. Since the source code is well organized and easy
to read, this task is normally relatively easy. Alternatively, the user could design an
interface for the material library itself.

1.1.5 Mesh Generation and Refinement
GSS employs the Triangle [1] mesh generator to model arbitrary device geometries
and complex surface topographies in a simulation using an unstructured mesh of
triangular elements. This initial mesh can then be further refined during the

1 Silvaco ATLAS uses "C script" interpreter to support user defined model.
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Chapter1. Introduction to GSS Software 1.2 Features And Capabilities

solution process based on potential or impurity concentration. Wherever the po-
tential or impurity concentrations vary by more than a specified tolerance over a
triangular element, it will be refined by sub-division into smaller triangles. This
flexibility makes the modeling of complex devices and structures possible.

Electrodes can be placed anywhere in the device structure. Impurity distributions
can be created by user-specified analytic functions, or generated by more accurate
Implant and Diffusion processes (this feature has been supported since Version
0.46).

1.1.6 Automatically Differentiation
When employing Newtons’ iteration method to solve the governing nonlinear equa-

Jacobian Matrix
Generated by AD

tions arising from the drift-diffusion model, the first derivative of the vector equa-
tions (the Jacobian matrix) needs to be calculated. In the past, symbolic differ-
entiation could be performed by hand. However, this process tends to be tedious
and unsuitable (in the authors experience) for creating bug free code.

Since version 0.46, GSS employs automatic differentiation (AD) to relieve this
NO Derivatives burden. All code has been rewritten in the AD format. This enables advanced

arithmetic to be integrated into the GSS code with affordable effort. Complex
physical models can now be implemented into the material library with the help
of the AD tool provided. No derivatives need to be explicitly written down2, which
reduces the workload by at least 75

+ Note:

Generating a Jacobian matrix by AD takes 10-30% more time than hand written
code. However, this cost is not considered expensive when one considers the great
convenience it provides overall.

1.2 Features And Capabilities
1.2.1 Comprehensive Set of Models

GSS can provide a comprehensive set of physical models, including:

• Drift-diffusion transport models.

• Energy balance transport models.

• Density gradient quantum transport models.

• Lattice heating and heat sinks can be considered with both DD and EB
model.

• DC, AC small-signal, and full time-dependency simulation.

• Fermi-Dirac and Boltzmann statistics.

• Advanced mobility models.

• Ohmic, Schottky, insulating contacts and floating metal gate.

• SRH, radiative, Auger, and surface recombination.

• Impact ionization.
2 Both Synopsys SenTaurus and Silvaco ATLAS require physical model as well as its derivatives
provided by user.
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1.3 Brief Overview of this Manual Chapter1. Introduction to GSS Software

• Optoelectronic interactions with finite element electromagnetic solver.

• Band-to-band tunneling.

• Graded and abrupt heterojunctions.

Furthermore, since GSS is an open-source code, the user can easily add their own
physical models. The authors will be pleased to assist users with this task.

1.2.2 Numerical Implementation
GSS employs a range powerful numerical techniques, including:

• Accurate and robust discretization techniques.

• Full Newton nonlinear iteration strategy.

• Exact generation of Jacobian matrix by AD.

• The stability of Newton’s iteration arithmetic is ensured by powerful line
search or trust region method, plus sophisticated damping strategy.

• Efficient solvers, both direct and krylov space based, can be chosen for linear
subproblems.

• Dynamic memory allocation, hence no explicit limit to problem size.

1.2.3 Circuit Level Mixed-Type Simulation
NGSPICE, the open-source implementation of SPICE3, provides an interface for

Unlimited
Mixed-Type
Simulation

GSS to perform mixed type circuit simulation. An interface is provided that
enables GSS/NIGSPICE to exchange data by TCP/IP protocol via a network.
Each GSS process simulates one transistor and is controlled by NGSPICE. This
mechanism supports unlimited numerical devices3 run in a parallel model.

1.3 Brief Overview of this Manual

3 The max number of numerical device is theoretically limited by the 65535 ports of TCP/IP
protocol.
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PART I. Introduction to
Semiconductor Physics

A Guide For Readers
This chapter briefly summarize results in solid-state physics that are useful in
the numerical simulation of semiconductor devices, which we hope would save the
reader from checking various scattered sources. Only the results will be presented
with brief comments, due to the nature of this book as a technical manual. The
readers are strongly recommended to read textbooks on solid-state physics and
semiconductor physics for a thorough treatment on these topics. The author
believes that the knowledge on the following topics are essential to users of device
simulators:

• Band structure theory, where material properties such as band-gap, effective
mass and density of states (DOS) are derived;

• Distribution function for carriers at equilibrium (Fermi-Dirac distribution),
and

• Transport equations of carriers, which encapsulate the various conservation
laws in the motion of carriers in non-equilibrium situations.

All transport models discussed in this book originate from the Boltzmann trans-
port equation (BTE), with simplifications to various extents, and thus are all clas-
sical transport models. Quantum transport models are not discussed. The three
components combine to provide a complete theory on semiconductor physics.
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Chapter 2 Energy Band Structure Of
Semiconductor

Energy band structure is one of the mostly complex contents in solid state physics.
We only give simplified introduction here. Currently the energy band theory has
two models, The tight banding model and the near free electron approximation.
The tight banding model builds in the atomic energy level’s crystal field stretch.
Near free electron approximation bases on free electron’s periodic field disturbance,
which is more straightforward in E ∼ k explanation.

2.1 Tight Binding Model
Tight binding model (tight-binding, TB), is also called linear combination of
atomic orbital, LCAO. This model bases on such physical image that believes
the molecular’s, crystal also belongs to molecular, electronic state is similar as
the electronic state in the crystal it composes. The molecular orbits is compose
of the linear combination of crystal atomic orbits. When atomic orbits compose
of molecular orbits, the orbits number is not changed. Molecular orbits’ energy
can be higher, lower or equal to atomic orbits’ energy level, which are called anti
bonding orbit, bonding orbit and non bonding orbit. We need to mention here
that in molecular calculation, quantum mechanics perturbance theory are gener-
ally used. Because of the difficulty on Schrödinger equation solving, a complicate
molecular has no analytical solution1. In this case, the disturbance theory is gen-
erally used. The perturbance method’s basis is to select some states and believe
that the real states can be represented with the linear combination of this states.
Then by putting the linear combination on the unknown question to fix the basic
state coefficients. In molecular calculation2, if we select the atomic state as the
basic state we have the linear combination of atomic orbital, LCAO.

Here, we give a preliminary impression through the simple H2 molecular. ψ is used
to represent H atom outside nuclear electron wave function, because two atoms
are completely equal, according to the atomic orbit linear combination model, the
H2 molecular orbit should have the following form:

ϕ+ = C+(ψA + ψB) (2.1)
ϕ− = C−(ψA − ψB) (2.2)

Normally we call ϕ+ as bonding state, ϕ− as antibonding state. For bonding state,
the electron clouds is in between the two nucleus and attracted simultaneously by
two nucleus, energy level is lower. For antibonding state the density state of
electron cloud in between the nucleus are small, energy level is higher, shown
below Figure (2.1).

Now considering a crystal made of n atoms. There are 1022 ∼ 1023 atoms in every
centimeter cube of the crystal. So normally n is a big number. When n atoms has
long distance among each others, there is no crystal, every atom’s energy level are

1 the most complicate molecular, which has analytical solution, is H+
2

2 In molecular calculation, atomic linear combination of atomic orbits are generally used. eg.
famous software Gaussian, which can calculate around 100 atoms molecular structure.
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Chapter2. Energy Band Structure Of Semiconductor 2.1 Tight Binding Model

Figure 2.1: H2 molecular orbit and its energy level

isolated as atoms. They are all n degree digenerated3. When n atoms com close
to each other and form crystal, every atom is affected by the surrounding atom
potential field. Now the real electron orbit is expressed as the linear combination
of n atoms, in consequence every atom’s energy level split to n levels, shown as
Figure (2.2), These n energy levels turn to be a energy band, electrons are not
belong to specific atom, but shared by the whole crystal. The each spliced energy
band is called permitted band (permitted band can be overlapped shown in Figure
(2.3)). Between permitted band, there is no energy level, which is called band gap.
Internal electrons were in low energy level, sharing movement is weak, their energy
split is very small, energy band is narrow. External electrons, especially valence
electrons have strong sharing characteristics. They are similar as free electrons,
called near free electrons, energy split is severe, energy band is wide.

Figure 2.2: Splitting of 3s energy levels as two, six, and N atoms come close to
form a crystal.

Please pay attention that every energy band includes energy level number is re-
lated to isolated atomic energy level. We have to consider the atomic energy
degeneration.For example s energy level does not have degeneration,after n atoms
combine to be a crystal, s energy level split to n close energy level and form an
3 Temperarily we don’t calculate the self degeneration of atom energy level
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2.1 Tight Binding Model Chapter2. Energy Band Structure Of Semiconductor

Figure 2.3: Energy band overlap illustration

energy band. Atom’s p energy level is 3 level degenerated, which splits to 3n close
energy level. The real crystal is composed with big number n close energy levels,
so every energy band can be treated as continuous, called quasi continuous. We
have to point out that real crystal energy band can be more complicate. Crystal
energy band may not be corresponding to isolated atoms. Some atomic’s external
s and p electron form complicate energy level for better bonding. For example IV
column Carbon, Silicon and etc. atoms all have 4 valance electrons 2s electrons,
2p electrons. In this case only two p electrons are used to bond, however all 4
electrons are going to bond with other atoms and form stable crystal in reality.
Accordingly we use diamond as an example, electron does not use carbon atom
basic state as the base state, whereas it uses sp3 complex bonding as the base
state:

ϕ1 =
1
2
(ψ2s + ψ2px + ψ2py + ψ2pz) (2.3)

ϕ2 =
1
2
(ψ2s + ψ2px − ψ2py − ψ2pz) (2.4)

ϕ3 =
1
2
(ψ2s − ψ2px + ψ2py − ψ2pz) (2.5)

ϕ4 =
1
2
(ψ2s − ψ2px − ψ2py + ψ2pz) (2.6)

To form orbit complex, it needs some energy. However after complex orbit is
formed, bond number increases, and due to electron cloud density increases at the
corner of tetragon, the bond strength increases, the energy decrease is enough to
satisfy the complex formation’s energy.

We give electron’s filling rule at 0 k temperature below. For normal temperature,
the rule follow Fermi-Dirac statistic distribution. Based on Pauli’s non accommo-
dating principle and lowest energy rule, electrons will fill the energy level from the
lowest energy level to higher energy level. Every energy level can have two spin
direction electrons. Energy band filling can be split into full band, valance band
and vacant band. Full band is to describe the energy band which is filled out with
electrons. Full band does not participate the conducting process. Valance band is
formed by valance electrons’ energy level split, valance band energy level is high,
which can be either filled out or not. Vacant band is corresponding to separate
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atom stimulated energy level, normally there is no electron filling in. In metals,
valance band acts as conduction band for conducting purpose. In semiconduc-
tor, we need to stimulate the valance band electron to the lowest vacant band to
conduct current, so the lowest energy level vacant band is called conduction band.

First we give metal, Li’s, energy level filling diagram. Li has 2 1s electrons and
1 2s electron, accordingly, after n atoms form metal crystal, 2n 1s electrons fill in
the lowest energy energy band, and n 2s electrons will fill half of the second energy
band, shown as Figure (2.4). Based on conducting theory, semi filled energy band
can conduct current, accordingly metal Li is a good conductor.

Figure 2.4: Energy band diagram of metal lithium and the filling of electron at
the energy levels.

For silicon atomic crystal, it was mentioned before that Silicon extra layer’s 4
electron adopt sp3 complex bonding, Previous 4n sp3 orbit splits to 2n bonding
orbits and 2n anti-bonding orbits. So 4n valance electrons fill out all the bonding
orbits,and there is no electron in anti-bonding orbits. Based on conducting theory,
full band and empty band can not conduct current. Accordingly if there is no
thermal emission factor, silicon can not conduct current, shown as Figure (2.5).

We have to explain here that H belongs to I group’s alkaline metal, but H can
only form molecular crystal with Van der waals force. This is mainly due to H’s
first ionization energy is as high as 13.6 eV, which is much bigger than alkaline
metal, around 4 − 5 eV. In gas phase, alkaline metal has dual atomic molecular
similarly. But in solid state, alkaline metal atom’s extra layer electrons can be
easily ionized to form free electrons in metal crystal. The ionization energy can
be balanced by the share bonding energy loss. However H2 molecular’s electron is
bonded around the nucleus, which can not form sharing electron state. Neverthe-
less, theocratically H can form metal hydrogen by using cryogenic high pressure
accumulation to force the electrons separate from the fetter.

2.2 One Dimension Near Free Electron Model
This section is going to discuss the near free electron model. In crystal, electron
is between free electron and fettered electrons. Isolated atom’s electrons move
around its nuclei and other electrons’ potential field. Free electrons are not af-
fected by any outside field. In crystal, electrons are periodically located at nuclei
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Figure 2.5: Semiconductor energy band diagram and electron filling energy level

potential and large amount of uniform potential. Near free electron model is
single electron approximation theory, which treats every electron’s movement as
independent election in a equalized potential field.

Near free electron model means electrons are not fettered by nuclei, and can
move inside the whole solid body. Electrons are called shared electrons. Shared
electrons’ movement rule is similar as free electrons. Free electrons are illustrated
below.

De ploit first propose wave particle duality characteristics for all the micro parti-
cles. Free particles all have wave length, frequency, momentum, energy following
the relationship below

p = m0v = ~k (2.7)

E =
1
2

p2

m0
= ~ν (2.8)

with certain momentum and certain energy’s free particle is similar as frequency
as ν and wave vector as k plane wave, the relationship between these two are the
same as photon and light wave.

One dimension particle’s wave function satisfy steady state Schrödinger equation

−
~2

2m
d2

dx2
ψ(x) = Eψ(x) (2.9)

Its solution is plane wave.

ψk(x) = Aeikx (2.10)

Ek =
~2k2

2m0
(2.11)

For wave vector k’s moving status, free electron’s energy, momentum both have
certain value. Accordingly wave vector k can describe free electron’s moving
status. The difference is k represents free electrons different state. Figure (2.6)
is free electron’s E ∼ k curve,is a parabolic curve. Because wave vector k is
continuous, free electron’s energy is continuous spectrum, from 0 to infinity.
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Figure 2.6: Free energy’s E ∼ k relationship

In crystal electrons move in nuclei potential and other huge amount of electron’s
average potential field V(x), basically it satisfies

−
~2

2m
d2

dx2
ψ(x) + V(x)ψ(x) = Eψ(x) (2.12)

if we can solve this equation, we can obtain electron’s wave function in the crys-
tal. However V(x) is very complicate in real crystal. Accordingly normally we
use pseudo potential to replace V(x). Pseudo potential is a method to use an
artificial field to replace the real potential field, in order to simplify calculation.
Accordingly, near free electron model’s accuracy is totally dependent on pseudo
potential parameters, and because it is single electron, it was very important dur-
ing the early research of material science, nowadays tight bonding is more popular.

No matter it is real potential field or pseudo potential field, V(x) must satisfy
crystal periodical condition.

V(x) = V(x + na) (2.13)

Where n is integer and a is crystal constant.

F.Bloch proved that those wave functions satisfy Equation (2.12) must have fol-
lowing format

ψk(x) = uk(x)eikx (2.14)

uk(x) is a periodic function which has same period as crystal matrix, as uk(x) =
uk(x + na). Generally we call Equation (2.14)’s wave function as Bloch wave
function.

If we compare the Bloch wave function and free electron wave function, we find
only periodic modulation amplitude u(x) is replaced by fixed amplitude A. Elec-
trons can also be at any position of the crystal, this is the history of near free
electrons. For specific wave vector k’s fix electron, its probability at certain crystal
cell | ψ∗k(x)ψk(x) |=| u∗k(x)uk(x) | changes with x, but for every basic cell’s corre-
sponding position, its probability distribution is fixed.

By using perturbance theory, we can obtain Figure (2.7)’s one dimension crystal
E ∼ k relationship, detail can be referred to Huang Kun’s solid state physics.
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Figure 2.7: One dimension crystal’s E ∼ k relationship

First, when k =
2πn

a
, energy turns to be non-continuous and form a series of permit

band and band gap, this result is the same as tight bonding theory. Attention,
energy E(k) is k’s multiple value function, if we want to know the electron’s energy,
we have to point out which energy band and its wave vector the electron has.
Second, at the same energy band, electron state can be expressed with share
movement of wave vector However because crystal has translation symmetry, the
k to make sure the electron’s status is not single. The following proves

k
′

= k +
2πn

a
(2.15)

and k express the same electron state. Equation (2.14) can be written as

ψk′ (x) = uk(x) exp
(
−i

2πn
a

x
)
exp

(
i(k +

2πn
a

)x
)

(2.16)

Because

uk(x) exp
(
−i

2πn
a

x
)
= uk(x + na) exp

(
−i

2πn
a

(x + na)
)

(2.17)

which means uk(x) exp
(
−i

2πn
a

x
)

is still crystal periodic function, so Equation
(2.16) can be written as

ψk′ (x) = uk′ (x) exp
(
ik
′

x
)

(2.18)

where uk′ (x) = uk(x) exp
(
−i

2πn
a

x
)
. It means at the same energy band, every other

2π/a’s k describe the same electron state.

Since in the same energy band k repeat with period 2π/a, energy E(k) is also k’s
period function, we have

E(k) = E(k +
2πn

a
) (2.19)
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then we can take −
π

a
∼

π

a
region (First Brillouin region)’s k value to express

electron’s energy state then use other region combine to first Brillouin region,
shown as Figure (2.7)’s simple Brillouin region’s E ∼ k relationship.

For limit length one dimension crystal, we still need to consider certain boundary
condition, for Equation (2.12) we introduce boundary condition, which can let k
take the following value

k =
n
L

2π (2.20)

N is the crystal cell number, L = Na is the total length of the crystal. This result
means the wave vector k can be a series of isolated value, and the status inside
Brilloin region are uniformly distributed. Every possible k value has length 2π/L.

For three dimension situation, we have

kx =
2πnx

Lx
(nx = 0,±1,±2 · · ·)

ky =
2πny

Ly
(ny = 0,±1,±2 · · ·)

kz =
2πnz

Lz
(nz = 0,±1,±2 · · ·)


now every k at k space’s volume is

(2π)3

Lx · (Ly × Lz)
=

(2π)3

V

where V is crystal’s volume. Accordingly, in k space k value’s density is V/(2π)3.

Because N’s a big number, k is also very dense, which can be considered as quasi
continuous. We can prove the every energy band has Nk states, because every
state can take 2 opposite spin direction electrons, every energy band can take 2N
electrons.

For real three dimensional crystal, Brillouin region is more complicate. For exam-
ple Silicon crystal structure is face center cubic matrix, its first Brillouin region is
a fourteen face body, shown in Figure (2.8). And three dimension situation is dif-
ferent from one dimension that the energy of different band may not be necessarily
separated. It is possible to overlap each other. Please attention that tight bonding
theory gives similar conclusion. Figure (2.9) shows that silicon’s valance band and
conduction band. We can clearly see that Silicon at Γ point has two band with
different energy. In valance band there are three energy bands overlapped each
other. Band gap is not at Γ point,whereas it is at ΓX axis.

The good thing is semiconductor numerical simulation avoids the complicate en-
ergy band structure most of the cases. Because those which can contribute to
current are electrons and holes concentrated under the bottom of conduction band
or at the bop of the valance band. So we only need to consider the energy band
structure at these two areas. After introducing the effective mass concept, the
bottom of conduction band and the top of valance band structure can be simply
replaced by effective mass.

2.3 Single Electron’s Movement in
Semiconductor

GeniEDA Corp. 19 GSS User’s Guide



2.3 Single Electron’s Movement in Semiconductor Chapter2. Energy Band Structure Of Semiconductor

Figure 2.8: Silicon’s first Brillouin region

2.3.1 Average electron speed in semiconductors
In semiconductor real problems, electron’s movement is treated as canonical par-
ticles. For example in transport process, when electron’s free distance is far longer
than basic cell length, electron can be treated as a canonical particle. Through
quantum mechanics calculation, canonical particle’s speed can be written as

v =
1
~
∇kE(k) (2.21)

The formulae above means for electrons inside crystal, quasi canonical moving
speed v is dependent on the E(k) ∼ k relationship under its condition,if we know
E(k) ∼ k relationship,we can obtain its moving speed, and construct moving equa-
tion.

2.3.2 Effective mass
Although real crystal’s band diagram is very complicate, for semiconductor, the
useful electrons are located only at the top of valance band and the bottom of
conduction band. Accordingly it would be enough if we know the E(k) ∼ k rela-
tionship around the extreme value.

By using Taylor progression expansion, we can obtain the E(k) ∼ k approximation
around the extreme value. We use one dimension case as example, assume con-
duction band’s bottom is at wave number k = 0, Expand E(k) Taylor progression
around k = 0, we have

E(k) = E(0) +
(dE
dk

)
k=0

k +
(d2E
dk2

)
k=0

k2 + · · · (2.22)

Because when k = 0 energy has extreme low value, its first order derivative is 0,
we have

E(k) − E(0) =
(d2E
dk2

)
k=0

k2 (2.23)
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Figure 2.9: Silicon’s energy band structure

For given semiconductor, energy’s second order derivative should be a certain
number. Let

1
~2

(d2E
dk2

)
k=0

=
1

m∗n
(2.24)

Put Equation (2.24) into Equation (2.23), we have the bottom of the band’s E(k)

E(k) − E(0) =
~2k2

2m∗n
(2.25)

Equation (2.25) and Equation (2.11) free electrons’ E(k) ∼ k relationship are
similar. What is different is Equation (2.11)’s m0 is electrons’ inertia mass, here
the m∗n is the effective mass at the bottom of the band. Because E(k) > E(0), the
effective mass of the bottom of the conduction band is positive.

Similarly assume the top of the band is at k = 0, we can also have

E(k) − E(0) =
(d2E
dk2

)
k=0

k2 (2.26)

let

1
~2

(d2E
dk2

)
k=0

=
1

m∗n
(2.27)

top of the band E(k) is

E(k) − E(0) =
~2k2

2m∗n
(2.28)

m∗n is called the effective mass at the top of the band. Because at the top of band
E(k) < E(0), m∗n is negative.

From Equation (2.25) and Equation (2.28) we notice, after introducing effective
mass, if we can measure its quantity, We can make sure about the E(k) ∼ k
relationship near energy band extreme value.

The discussion above is all based on one dimension condition, at three dimension
condition, because energy band is not symmetrical, the effective mass is expressed
as tensor format.
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2.3.3 Outside force and electron acceleration
In reality, many semiconductor devices works at certain voltage, there is electric
field inside semiconductor. The electrons experiences not only the periodic poten-
tial’s effect, but also the electric field from the outside electric field. The periodic
potential has already replaced by effective mass, the outer electric field will affect
the electrons’ speed variation.

With outside force F on the electron, after dt time, the momentum of the electron
will increase

dE = F · vdt = F ·
1
~
∇kEdt (2.29)

Following electron energy E and k’s function relationship, k will certainly changes
dk. Accordingly electron’s energy after dt time will increase:

dE = ∇kE · dk = ∇kE ·
dk
dt

dt =
(
~dk
dt

)
·

(1
~
∇kE

)
dt (2.30)

Compare the previous two formulae, we have

d(~k)
dt

= F (2.31)

Equation (2.31) is the electron moving status with the outer force. For example
constant outside field, electron will move with uniform speed in k space. Equation
(2.31) has similar format as Newton rule, only use ~k to replace canonical mechan-
ics’ momentum. Accordingly ~k has equivalent momentum format, called quasi
momentum. without outside force status k does not change, so quasi momentum
does not change.

Accordingly the outside force leads k to change with time, so that the electron

speed follows the variation of the time, it means electron accelerates. a =
dv
dt

. In
one dimension case, based on Equation (2.21)’s acceleration is

a =
dv
dt

=
1
~2

d2E
dk2

F (2.32)

By using effective mass, the formulae above can be written as

F = m∗a (2.33)

In this case, the electron’s acceleration under outside force has the same format
as the canonical mechanics.

We introduce single electron inside crystal’s movement under outside field. It
seems that the problem has already been solved. If we reconsider the electron’s
movement under different scattering mechanism, we can describe electron’s trans-
portation problem. However semiconductor macro phenomenon depends on huge
number of particles. The huge number of electrons inside the crystal leads to
computational difficulty. So in the following pages, we are going to adopt macro
partial model to decrease the tracing number of particles. But he calculation load
is still huge. So we need to deal with this problem in macroscopic way and have
basic continuous materials’ Boltzmann transport equation.

GeniEDA Corp. 22 GSS User’s Guide



Chapter 3 Balanced Electron Statistic
Distribution

3.1 Electron’s Fermi-Dirac Statistic
Distribution

From this chapter, we are not only limited on single particle’s description. And
by using statistical rule to describe huge number of electrons inside the crystal.

Based on quantum statistics, spinning
1
2

electron follow Fermi-Dirac statistic dis-
tribution. The probability of energy level E is occupied is

fFD(E) =
1

1 + exp(
E − EF

kbT
)

(3.1)

fFD(E) is called electron’s Fermi distribution function, it is a distribution function
which is used to describe the electron’s distribution under thermal stability. kb is
Boltzmann constant, T is the systematical thermal temperature.

If given E ∼ k relationship, through transformation, we can obtain Fermi distribu-
tion function with momentum as the self viable, it is used generally in semiconduc-
tor quantum mechanics calculation to fix the boundary condition. For example
the bottom of conduction band, we have

E(k) =
h2k2

2m∗
(3.2)

now, Fermi distribution function can be expressed as

fFD(k) =
4πm∗kbT

h2
ln{1 + exp[−

1
kbT

(
h2k2

8π2m∗
− EF)]} (3.3)

Formulae (3.1) and Formulae (3.3)’s EF is called Fermi energy level, in semicon-
ductor, it is just related to temperature, semiconductor material, doping concen-
tration and system zero point selection. EF is a very important parameter, when
EF is given, electron at different energy level’s statistical distribution are totally
fixed. EF can be fixed by material energy band’s occupied energy level number
equals to electron number. Discuss later.

We integrate semiconductor’s huge amount of electron as a thermal system. Quan-
tum calculation theory proves that Fermi level EF is the system’s chemical poten-
tial µ. Because the system at thermal stability has uniform chemical potential,
the electron system at thermal stability has a fixed fermi energy level.

From Formulae (3.1), when T = 0K,

fFD(E) =

1 E < EF

0 E > EF

(3.4)
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so at 0K, energy level less than EF are all occupied by electrons. And energy level
large than EF are all vacant. Accordingly in 0K, EF is the boundary of whether
energy level is occupied by an electron.

When T > 0K, as Formulae (3.4) shows, the probability of energy level equal to
EF is 0.5.

fFD(E)


> 1

2 E < EF

= 1
2 E = EF

< 1
2 E > EF

(3.5)

Figure (3.1) gives Fermi function under different temperature. We can see, at
T > 0 fermi function and 0K fermi function’s difference is only several kbT closed
to EF .

Figure 3.1: Fermi distribution and temperature relationship

The probability of electron occupying energy level 5kbT higher than EF is < 0.007,
which is very small and almost empty. Energy level which is 5kbT lower than EF

has probability > 0.993 for electron occupation. So we know the quantum state
are filled with electrons.

Normally we can consider at temperature, which is not too high, energy larger
than EF ’s energy level does not have electrons, energy level less than EF ’s energy
levels are occupied by electrons. The probability of electron occupy EF level at any
temperature is always 0.5. Normally we consider EF marking the electrons’ filling
level.The higher EF is the more high energy level can be occupied by electrons.

Attention for specific energy level’s electron density is decided by Fermi level EF

and state density g together. In semiconductor, because electron are partially
filled at the bottom of conduction band, the valance band top are occupied by
holes. Which means 50% filling probability’s EF is normally inside the band gap,
shown below Figure (3.2). Because the energy band’s limitation, EF itself is not
occupied by electron, which means EF has 0 energy state density. The electron
density detail calculation will be discussed in the third section.

3.2 Boltzmann Distribution Function
Because Fermi integral does not have analytical solution except several special
cases. The application is not convenient. The good thing is in most cases, we can
simply Fermi distribution function to Boltzmann distribution function.
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Figure 3.2: The Fermi energy level of intrinsic semiconductor

When E − EF � kbT , exp(
E − EF

kbT
) � 1, so

1 + exp(
E − EF

kbT
) ≈ exp(

E − EF

kbT
)

now fermi distribution function can be approximately written as

fFD(E) ≈ fB(E) = exp(−
E − EF

kbT
) (3.6)

as typical Boltzmann distribution. Attention when E − EF � kbT , the probability
of energy level is occupied by electrons are very small, and the main difference be-
tween Fermi distribution and Boltzmann distribution is the previous one affected
by Pauli non accommodating principle’s limitations. When E − EF � kbT two
or more electrons can occupy same electron state, the probability of this kind of
things happening is very small. Accordingly Pauli non accommodating principle’s
influence on result is very small, two distribution function’s results has almost no
difference.

3.3 Hole’s Distribution Function
In order to differentiate, we are going to use fn(E) to express electron distribution
function. Since fn(E) express energy as E’s electron state occupied probability,
then 1− fn(E) is the probability of that state being occupied, the hole distribution:

fp(E) = 1 − fn(E) =
1

1 + exp(
EF − E

kbT
)

(3.7)

Similarly, when EF − E � kbT , the formulae above’s 1 in denominator can be
neglected, we have hole’s Boltzmann distribution function.

fp(E) = exp(−
EF − E

kbT
) (3.8)

Generally, semiconductor’s EF is inside the band gap and has distance bigger
than kbT to the bottom of conduction band and top of the valance band. So
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the electron in conduction band and hole in valance band follows Boltzmann
distribution. Generally we call those electron systems which satisfy Boltzmaan
distribution as non degenerate systems. The corresponding semiconductor turns
to be non degenerate semiconductor.

But under high doping and low temperature condition, EF can be close or even
go into the conduction band or valance band. In this case we have to go back to
fermi distribution. At room temperature, for silicon, the doping must be higher
than 1019cm−3, so that we need to consider fermi distribution, But for GaAs, when
doping concentration arrives 1017cm−3 we need to consider using fermi distribution
as shown in Figure (3.5) and Figure (3.6).

3.4 Carrier’s Concentration
Now we discuss the carriers concentration under semiconductor thermal stability.
We know carriers occupying quantum state, and every other unit time quantum
state number, state density g(E). As discussed before, in k space the electron
status distribution is uniform, the state density is 2V/(2π)3. Here we consider two
opposite spinning directions’ state.Based on the specific E ∼ k relationship, we can
get energy band’s state density from k space’s state density. Because the carriers
in semiconductor are mostly under the bottom of the conduction band and the top
of valance band, we only need to consider this part’s E ∼ k relationship and state
density. Assume at the bottom of conduction band k = 0, and we have parabolic
E ∼ k relationship:

E = Ec +
~2k2

2mn
(3.9)

Assume sphere equal energy face, energy inside E ∼ E + dE(k ∼ k + dk)’s state
density is

dz =
2V

(2π)3
× 4πk2dk (3.10)

put into Equation (3.9), Let k expressed by E, we have

dz =
V (2mn)

2/3

2π2~3
(E − Ec)

1/2 dE (3.11)

This way, we have the state density at the bottom of the conduction band:

gc (E) =
dz
dE

=
V (2mn)

2/3

2π2~3
(E − Ec)

1/2 (3.12)

Similarly, we can have the state density close to the top of the valance band:

gv (E) =
V (2mp)

2/3

2π2~3
(Ev − E)1/2 (3.13)

Here although we assume the sphere equalized energy face, for other conditions,
by introducing state density effective mass, we still have Equation (3.12) and
Equation (3.13).

After we have the state density, we consider the energy level is continuous inside
the energy band, carriers’ density can be written as integral format:

n0 =
1
V

+∞∫
Ec

gc(E) fn(E) dE (3.14)
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p0 =
1
V

Ev∫
−∞

gv(E) fp(E) dE (3.15)

3.4.1 Non degenerate semiconductor carriers’ concentration’s
relationship with Fermi energy level

For non degenerate semiconductor, using Boltzmann distribution, put state den-
sity Equation (3.12) and distribution Formulae (3.6) into Equation (3.14), we have

n0 =

+∞∫
Ec

(2m∗n)
2/3

2π2~3
(E − Ec)1/2 exp(−

E − EF

kbT
) dE (3.16)

the integral above have analytical solution, by using variable replacement we have

n0 = 2
(m∗nkbT

2π~2

)3/2
exp(−

Ec − EF

kbT
) = Nc exp(−

Ec − EF

kbT
) (3.17)

in the above formulae,

Nc ≡ 2
(m∗nkbT

2π~2

)3/2
(3.18)

is called conduction band bottom effective state density.

Similarly we can obtain valance band’s hole concentration’s expression

p0 =

Ev∫
−∞

(2m∗p)
2/3

2π2~3
(Ev − E)1/2 exp(−

EF − E
kbT

) dE (3.19)

we have

p0 = 2
(m∗pkbT

2π~2

)3/2
exp(−

EF − Ev

kbT
) = Nv exp(−

EF − Ev

kbT
) (3.20)

in the formulae above

Nv ≡ 2
(m∗pkbT

2π~2

)3/2
(3.21)

is called valance band top effective state density.

Formulae (3.17) and Formulae (3.20) express the carrier’s concentration n0, p0 and
EF ’s relationship. Because EF is not only related to temperature but also to the
semiconductor doping energy level and doping concentration density. Accordingly
even for the same semiconductor material, because of the dopants difference and
doping concentration’s difference at the same temperature electron and hole’s
concentration can be very different. But from Equation (3.17) and Equation
(3.20) we have n0 and p0’s product

n0p0 = NcNv exp(−
Ec − Ev

kbT
) = NcNv exp(−

Eg

kbT
) (3.22)

which does not contain EF , accordingly it is not related to doping1, when the
material is fixed, it is just the function of temperature. When the temperature
is not changed n0p0’s product keeps constant. The detail number is decided by
material’s energy band parameter. So conduction band electron concentration
and valance band hole concentration are limited to each other.
1 We do not consider the band gap narrowing effect here
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3.4.2 Degenerate semiconductor concentration’s relationship with
Fermi energy level

For degenerated semiconductor, following Fermi distribution, similarly we can
obtain the relationship between electron/hole’s concentration and EF .

n0 = NcF1/2(ηn) (3.23)

p0 = NvF1/2(ηp) (3.24)

in above formulae

ηn =
EF − Ec

kbT

ηp =
Ev − EF

kbT

F1/2(ηs) is 1/2 order fermi integration:

F1/2(ηs) =
2
√
π

+∞∫
0

η1/2

1 + exp(η − ηs)
dη (3.25)

The fermi integration does not have analytical solution, normally we adopt numer-
ical method to calculation. When accuracy request is high, we can use chebyshev
multiple items interpolation. GSS used a simple method:

F1/2(η) =
2
√
π

3
√
πa−3/8 + 4 exp(−η)

a = η4 + 33.6η(1 − 0.68 exp(−0.17(η+ 1)2)) + 50

In η from −∞ to +∞’s variation, the analytical above formulae’s result and ac-
curate value’s error is less than 0.4%. In this case another advantage is we can
obtain F

′

1/2’s analytical expression, which is very useful for the later Newton iter-
ation solving EF .

Till now we already have n0, p0 and EF ’s relationship, because the previous two
equations have three variables, we need to add electric neutralization condition to
make the complete equation set.

3.4.3 Intrinsic semiconductor carriers’ concentration
For intrinsic situation, normally we can use Boltzmann distribution, electric neu-
tralization condition is n0 = p0, by using Equation (3.17) and Equation (3.20),
we can solve the intrinsic semiconductor fermi level as:

Ei = EF =
1
2
(Ec + Ev) +

1
2

kbT ln
Nv

Nc
(3.26)

The formulae above’s first item is at the center of the band gap, the second
item of GeÂřÂćSiÂřÂćGaAs is around kbT level, which is far less than the first
item in room temperature. It means Ei locates at the middle of the band gap
approximately, following Boltzmann distribution condition. Define

ψintrinsic = −
1
q

Ei (3.27)

as the intrinsic fermi potential, this quantity is used for electric potential’s refer-
ence in semiconductor simulation.
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Put Equation (3.26) into Equation (3.17) or Equation (3.20), we have intrinsic
carriers’ concentration ni as

ni = n0 = p0 = (NcNv)1/2 exp(−
Eg

2kbT
) (3.28)

and compared with Equation (3.22), we have semiconductor carriers concentration
production’s another expression:

n0p0 = n2
i (3.29)

which is any non degenerate semiconductor’s carrier concentration product, which
equals to corresponding temperature’s intrinsic carrier’s concentration square and
independent to doping concentration. By using intrinsic carrier concentration ni,
intrinsic fermi energy level Ei can transform n0, p0’s expression Equation (3.17)
and Equation (3.20) to

n0 = ni exp(
EF − Ei

kbT
) (3.30)

p0 = ni exp(
Ei − EF

kbT
) (3.31)

sometimes these two formulae are more convenient.

3.4.4 Band gab narrowing effect and effective intrinsic carrier
concentration

In this section we only discussing single ionized shallow energy level doping Doped
semiconductor’s N type doping, called Donor. Normally donor energy level ED is
close to Ec, the donor electron is easy to jump into conduction band, which lead
to increase of conduction electron density and high conductivity. Simultaneously
fermi energy level moves to conduction band shown in Figure (3.3).

When doping semiconduction is P type dopant, we call it acceptor, normally
acceptor energy level EA is close to Ev, because acceptor is lack of electrons.
The valance band is easy to jump into acceptor energy level and form holes in the
valance band, which leads to hole concentration increase and conductivity increase.
Simultaneously fermi energy level turns to valance band shown in Figure (3.4).

Figure 3.3: Donor energy level Figure 3.4: Acceptor energy level

In most semiconductor devices, there is always region doping concentration higher
than 1018cm−3, these highly doped region is very important for deciding the de-
vice’s characteristics. In high doping area, the carriers’ concentration must adopt
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fermi distribution and we need to consider the band shape variation due to the
high doping.

During high doping, there are two main factors affecting electron and hole’s state
density: first is the function between carriers and between carriers and ionized
dopant and the second is uniformity of dopant and the dopants’ wave function
overlap’s effect on energy band tain and dopant energy band. These two factors
together will lead to band gap narrowing.

If we consider Fermi distribution function and band gap narrowing effect, the car-
riers’ concentration’s expression is comparatively complicate. For simplification,
we can introduce intrinsic carrier concentration concept. In this way we can can
relatively accurate result much easier.

Assume under high doping concentration, valance band’s top Ev,e f f , conduction
band’s bottom Ec,e f f carrier’s concentration can be expressed as:

n = NcF1/2

(
EF − Ec,e f f

kbT

)
p = NvF1/2

(
Ev,e f f − EF

kbT

) (3.32)

Similar to define intrinsic carrier concentration, define intrinsic carrier concentra-
tion as:

n2
ie = n2

i β exp
(
∆Eg

kbT

)
(3.33)

∆Eg is the band gap width’s variation value, β is the factor to represent the
degeneration.

β = F1/2

(
EF − Ec,e f f

kbT

)
/ exp

(
EF − Ec,e f f

kbT

)
now, Equation (3.30) and Equation (3.31) turn to be

n0 = nie exp(
EF − Ei

kbT
) (3.34)

p0 = nie exp(
Ei − EF

kbT
) (3.35)

Equation (3.33) needs to calculate fermi integral, in reality it is very inconvenient,
normally we use empirical formulae to fit it.

After introducing effective intrinsic carrier concentration, within certain wide dop-
ing concentration, carrier’s concentration can still be expressed with Boltzmann
distribution. For total doping concentration less than 8 × 1018cm−3 and doping
balance degree is less than 10%, we adopt effective intrinsic carrier concentration
method for better result, its error is less than 10%. For higher doping concentra-
tion and high doping balanced material, its result are not very good.

3.4.5 Doped semiconductor carriers’ concentration
Based on the result of previous section, for not very high doped cases, using
effective intrinsic carrier concentration with Boltzmann distribution can have very
good result, otherwise we are going back to fermi distribution.
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Because semiconduction simulation consider’s temperture is normally around300Kand
doping level is not very high, we can consider dopants are fully ionized, the electric
neutral condition is relatively easy:

n0 + NA = p0 + ND (3.36)

NA and ND are donor and acceptor doping concentrations. Together Equation
(3.34) and Equation (3.35), we gave

n0 =
(ND − NA) +

√
(ND − NA)2 + 4n2

ie

2
(3.37)

p0 =
−(ND − NA) +

√
(ND − NA)2 + 4n2

ie

2
(3.38)

EF = Ei + kbT ln
( n0

nie

)
= Ei − kbT ln

( p0

nie

)
(3.39)

The previous three formulae can be used to calculate steady state uniform semicon-
ductor’s internal properties. Besides, the ohmic contact between semiconductor
and metal, we consider semiconductor keeps steady state. The previous three for-
mulae can be used to calculate the electron, hole concentration and static electric
potential at this point, so we can fix the boundary condition at this point.

For highly doped and low temperature condition, we have to use degenerate fermi
distribution, simultaneously for more accurate result, we need to consider incom-
plete ionization. In this case effective donor concentration and acceptor concen-
tration are

N+
D =

ND

1 + gD exp(
EF − ED

kbT
)

(3.40)

N+
A =

NA

1 + gA exp(
EA − EF

kbT
)

(3.41)

gD and gA are donor and acceptor energy’s degeneration degree, for Ge, Si or
GaAs, gD = 2, gA = 4. ED and EA are donor and acceptor energy level.

Now the electric neutralization condition is

n0 + N+
A = p0 + N+

D (3.42)

To fix EF , n0 and p0 we need to solve Equation (3.42) together with Equation
(3.32). Since no analytical solution exists, we can only use Newton iteration
method to get the numerical result. The detail calculation process can be found
in "??", on page ??.

In the end, experiments measured Silicon, GaAs’s fermi level and temperature,
doping relationship is shown in Figure (3.5) and Figure (3.6).
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Figure 3.5: Silicon fermi level and doping concentration curve

Figure 3.6: GaAs fermi level and doping concentration curve
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Chapter 4 Non-Equilibrium Carriers

4.1 Quasi Fermi Level
In last chapter, we discussed the problems with the thermal stability assumption.
In this thermal stability’s carrier concentration is called balanced carrier concen-
tration. If it is non degenerate semiconductor, electron, hole’s production satisfy1

n0p0 = NcNv exp
(
−

Eg

kbT

)
= n2

i (4.1)

Attention thermal stability is not absolute motionless sate, electrons inside semi-
conductor are still moving continuously. However under thermal balance the elec-
tron jumping from valance band to conduction band is the same as the electrons
jumping from the conduction band to the valance band, which keeps the carrier’s
generation and recombination balance.

However, semiconductor’s thermal stability is conditional. If we put outside force
on the semiconductor to destroy the thermal balance condition, it is called non
equilibrium state. Now Equation (4.1) is not correct. For example the light emis-
sion semiconductor’s carrier has big recombination, which is far more than the
equilibrium state. The carrier more than the balanced state is called surplus car-
rier. When the light stops, non equilibrium state can not be sustain. Following
half life time around micro second’s exponential degradation to zero. This half
life time degradation is called non balanced carrier’s life time. For different semi-
conductor material, different material process condition, surplus carriers life time
can vary in a big scope. For silicon, around tens of micro seconds, for GaAs, only
several nano second.

when semiconductor’s electron system is at balance state. The whole semicon-
ductor has uniform fermi energy level, electron, hole are described by it. Under
non degenerated condition follows Equation (3.17) and Equation (3.20). Under
degenerated conditions it follows Equation (3.23) and Equation (3.24). Because
there is uniform fermi energy level EF , in thermal stability state, semiconductor’s
electron and hole concentration product must satisfy Equation (4.1). Accordingly
there is uniform fermi energy level, which is similar as balance state.

When outside’s impact destroy the thermal stability, there is no uniform fermi
energy level. However in general conditions, because semiconductor’s surplus car-
rier’s life time is at 10−8 ∼ 10−3 second scope, the carrier and crystal’s energy
transfer’s collision’s relaxation time (in order to differentiate from momentum
relaxation time, we call it energy relaxation time.) is around 10−10 second and be-
low. Accordingly surplus carriers will collide with the crystal matrix many times
from the generation to recombination, and fully exchange energy. If the crys-
tal thermal capacity is relatively big, we can consider conduction band electron
and crystal matrix or valance band hole and crystal matrix are independent from
thermal stability and share the same temperature 2. This kind of state similar
to thermal stability state is called quasi thermal stability state. Certainly, now
1 for simplification, we use intrinsic carrier concentration to express. In reality all use effective
intrinsic carrier concentration.

2 It is only suitable for drift diffusion model. In fluid dynamic model, electron, hole temperature
are not equal to crystal temperature, and thermal carriers exist.
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at the conduction band electron system and valance band hole system does not
have thermal stability, so there is no uniform fermi energy level. But the quasi
thermal stability can consider conduction band electron system itself and valance
band itself, following Boltzmann distribution or Fermi distribution, separately
have their own fermi energy level. The corresponding electron fermi level is EFn

and hole fermi level is EFp . Besides, now the fermi energy level is localized value.
At different semiconductor area, surplus carrier concentrations are different, fermi
levels are different.

After introduction fermi level, non stable state carrier concentration can be ap-
proximate with similar formulae, if the carrier concentration is not very high so
that EFn and EFp go into conduction band or valance band, we can use Boltzmann
distribution:

n = Nc exp
(
−

Ec − EFn

kbT

)
= n0 exp

(EFn − EF

kbT

)
= ni exp

(EFn − Ei

kbT

)
(4.2)

p = Nv exp
(
−

EFp − Ev

kbT

)
= p0 exp

(EF − EFp

kbT

)
= ni exp

(Ei − EFp

kbT

)
(4.3)

Known carrier concentration, we can use the previous formulae to fix fermi level
EFn and EFp ’s position.

EFn = Ec + kbT ln
n

Nc
(4.4)

EFp = Ev − kbT ln
p

Nv
(4.5)

Now we need to fix the electron concentration and hole concentration’s produc-
tÂčâĹń

np = n0p0 exp
(EFn − EFp

kbT

)
= n2

i exp
(EFn − EFp

kbT

)
(4.6)

We can see EFn and EFp ’s difference directly reflects np and n0p0’s difference, which
represent the semiconductor’s distance from thermal stability. The bigger the
difference from etcher, the higher the semiconductor is from the thermal stability.
If there is no difference, there is uniform fermi energy level, so semiconductor is
at the thermal stability state.

4.2 Carriers Recombination and Generation
Because semiconductor internally interacts with each other, which leads to certain
electron and hole’e existence, and solely decided by fermi level’s position. But the
stability does not mean the electron and hole do not jump from different energy
levels. As discussion before, from microscopic point of view, valance electron jump
to conduction band electron form electron hole pair. Simultaneously, conduction
band electron continuously jump back to valance band to recombine with holes
and disappear. Stability state means the semiconductor internally different energy
level’s jumping is balanced. The jumping impact on generation and recombination
does not lead to system macroscopic effects. However when the semiconductor is
affected by outside force, the carrier concentration are not equal to stable concen-
tration, the surplus generation and recombination will be reflected to macroscopic
phenomenon.

In semiconductor the carrier’s recombination has many different path, but there
are two main types: band to band electron hole direct recombination and through
band gap recombination center’s recombination. The previous one is the meet
between electron and hole. Electron jump from the conduction band’s certain
state to valance band’s hole’s state. Simultaneously release the energy (photon or
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phonon). The recombination is called direct band to band recombination. shown
as figure Figure (4.1)(a) illustrate: it is also possible that two electron (two holes)
recombine with one hole (one electron), one of the electron will transfer the energy
to another electron (hole). This kind of process is called Auger process, shown in
figure Figure (4.2)(b) illustrate, this kind of recombination is called band to band
Auger recombination. Another type of carrier move through a defect or doping
center and are captured. And then the center recapture the reverse carrier so as
to finish the recombination process. Simultaneously release surplus energy. This
kind of recombination is called recombination through recombination center. This
kind of defect or doping center is called recombination center. The released energy
can be photon or phonon, shown as Figure (4.1)(a) illustrate, and also can take
Auger process, shown as Figure (4.2)(a).

Figure 4.1: Direct recombination and
doping center recombination

Figure 4.2: Auger recombination

4.2.1 Band to band Direct recombination
For band to band direct recombination we can assume recombination rate R pro-
portional to carrier concentration n and p as

R = rnp (4.7)

where r is recombination coefficient, it is not related to n and p, because during
thermal stability we have

G0 = R0 = rn0p0 (4.8)

then the surplus carrier’s net recombination rate isÂčâĹń

U = R −G0 = r(np − n0p0) (4.9)

Assume the non equilibrium carrier n = n0 + ∆n, p = p0 + ∆p and ∆n = ∆p, we
have

U = r(n0 + p0)∆p + r(∆p)2 (4.10)

If there is only direct recombination, we can obtain surplus carrier’s life time:

τ =
∆p
U

=
1

r(n0 + p0 + ∆p)
(4.11)
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Carrier’s life time τ, is dependent on recombination probability r. Based on intrin-
sic light absorption data, and combining with the theoretic calculation we have
r’s value. Based on theocratical calculation in room temperature intrinsic silicon’s
r = 10−11cm2/s and τ = 3.5s. However real silicon material’s carrier lifetime is
much lower than the data, the maximum life time is only several milliseconds.
This case means, for silicon life time is not dependent on direct band to band
recombination, there must be other recombination mechanisms dominating the
carrier’s life time. It is discussed below about recombination through recombina-
tion center.

4.2.2 Auger indirect recombination

Different from direct recombination, band to band Auger recombination process
is a process with three particles. Accordingly the recombination rate R will not
be proportional to np, but proportional to n2p or np2. For two electrons and one
hole process

Ran = rann2p (4.12)

For two holes and one electron process

Rap = rap p2n (4.13)

ranandrapare called Auger recombination coefficient.

On the contrary of Auger electron-hole recombination process, there is impact
ionization process. A high energy electron (or hole)collide another electron in
valance band and activate the electron into conductor band to form a pair of
electron-hole pair, simultaneously jump to the bottom of the conduction band
(or jump to the top of the valance band). This impact ionization’s probability is
proportional to high energy or hole’s concentration. In non degenerate condition,
it is proportional to total concentration n or p, now its generation rate is:

Gan = gann (4.14)
Gap = gap p (4.15)

In thermal stability, we should haveRan0 = Gan0,Rap0 = Gap0 so we have

gan = rann2
i (4.16)

gap = rapn2
i (4.17)

UAuger = ran(pn2 − nn2
i ) + rap(np2 − pn2

i ) (4.18)

Assume non balance carrier n = n0 + ∆n, p = p0 + ∆p and ∆n = ∆p, we have
the life time of carrier

τn = τp =
1

(n0 + p0 + ∆p)(rann + ran p)
(4.19)

Because band to band Auger recombination is a three body problem, its proba-
bility is not high when carrier concentration is not high. Generally Auger band
to band recombination is important at narrow band gap semiconductor and high
temperature conditions.
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4.2.3 Recombination through recombination center
In semiconductor the defect or dopants introduced some deep energy level center.
Although at room temperature its impact on conductivity is not obvious, their
existence can help carriers recombination. Normally this kind of dopant and defect
center is effective recombination center.

Recombination center’s impact on carriers can be described as four period: elec-
tron/hole capturing, electron stimulation (electron is thermal stimulated from
recombination energy level Et to the conduction band.) or hole stimulation (Hole
is thermal stimulate to valance band from Et.

Although these four processes happens simultaneously, only after the recombi-
nation center captured an electron and a hole, the electron hole recombination
process is finished. Shockley, Read and Hall first discussed this situation, their
theory is called SRH recombination theory.

Let Nr be recombination center concentration,nr as the concentration of recombi-
nation centers, which capture electrons, pr = Nr − nr, is those without capturing
electron recombination center concentration.

Rn = rnn(Nr − nr) (4.20)
Rp = rp pnr (4.21)
Gn = ennr (4.22)
Gp = ep(Nr − nr) (4.23)

rn and rp are called recombination center’s electron/hole capturing coefficients. en

and ep are called electron and hole generation coefficients.

Obviously, during thermal stability we have Rn0 = Gn0 and Rp0 = Gp0. We can
lead to en = rnnl

ep = rp pl
(4.24)

In above formulae

nl = Nc exp
(
−

Ec − Et

kbT

)
= ni exp

(Et − Ei

kbT

)
(4.25)

pl = Nv exp
(
−

Et − Ev

kbT

)
= ni exp

(Ei − Et

kbT

)
(4.26)

Recombination center’s net capture rate for electrons and holes are

Un = rnn(Nr − nr) − ennr (4.27)
Up = rp pnr − ep pr (4.28)

During stability state from U = Un = Up we have

nr = Nr
rnnl + rp pl

rn(n + nl) + rp(p + pl)
(4.29)

Put the above formulae into Un or Up we have

U =
(pn − n2

i )
τp(n + nl) + τn(p + pl)

(4.30)

τn =
1

rnNr
(4.31)

τp =
1

rpNr
(4.32)
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Recombination rate U can also be written as

U =
pn − n2

i

τp

[
n + ni exp

(
Et − Ei

kbT

)]
+ τn

[
p + ni exp

(
−

Et − Ei

kbT

)] (4.33)

In the above formulae, when Et ∼ Ei, U turns to be maximum. Accordingly those
deep energy level close to the band gap center is the most effective recombination
center. For example Cu, Fe, Au and etc. in Silicon.

4.2.4 Carrier’s impact ionization
In strong electric density, electron and hole are accelerated in the electric field,

they can have very big kinetic energy. Those energy larger than
3
2

Eg’s electrons
and holes can knock the electron in valance band out during the collision with
crystal lattice to form conduction electron and simultaneously form a hole. From
energy band’s point of view, it means high energy electron or hole stimulate the
electron from valance band to conduction band to form electron hole pair, shown
as Figure (4.3). The electron and hole from collision can move to the reverse
directions and stimulate another collision to form next generation electron-hole
pair. Carrying this process, carriers number can increase qualitatively, this effect
of carrier breading is called avalanche effect. Because of avalanche effect, large
number of carriers are generated in unit period, current increases sharply so that
breakdown happens. This is called avalanche breakdown mechanism, shown as
Figure (4.4). Avalanche breakdown normally happens at reverse bias pn junction.

Figure 4.3: Carrier’s impact ionization

Avalanche breakdown not only needs strong electric field, but also certain thickness
of of electric field. Because the carriers’ kinetic energy’s increase needs certain
acceleration region. If the strong electric field region is too small, particles leave
the region before accelerate to high energy, which can lead impact ionization.
Avalanche breakdown will not happen.

4.2.5 Carrier’s band to band tunneling
For diode, if pn junction’s both side has not very high concentration and there
is no sharp variation, reverse breakdown carriers’ generation is dominated by
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Figure 4.4: Diode’s avalanche mechanism

impact ionization. For highly doped diode, when reverse biased electric field less
than impact ionization requested electric field, the breakdown possibly happens
because of carriers band to band tunneling.

In relatively high reverse bias, those electrons in the top of pn junction’s p region
valance band can has higher energy than those electrons at the bottom of con-
duction band. shown as Figure (4.5), which leads to that those electrons at the
valance band of p region can tunnel to the conduction band of n region with quan-
tum mechanic tunneling effect. The tunneling effect generates a hole in valance
band and simultaneously form a electron and conduction band. When reverse
bias voltage increases to VB, as the tunneling rate increases, this tunneling elec-
trons reach certain quantity, leads to very big reverse current, which makes pn
junction breakdown. Because Zerner first explain electric dielectric breakdown
phenomenon, it is also called Zener breakdown.

Figure 4.5: Zener diode tunneling process

Based on quantum mechanics theory, electron with energy E’s probability of pass-
ing energy barrier W is

p = exp
[
−

2
~

∫ W

0

√
2me (U − E)dx

]
(4.34)
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Approximate the potential barrier in Figure (4.5) to be triangle with height Eg and
width w. So that uniform potential barrier internal electric field F is uniform, and
we have U = qFx. First assume electron’s initial energy as zero, after calculation
we have the tunneling rate as

p = exp

−4
√

2me

3~
E2/3

g

qF

 (4.35)

This result illustrates that the tunneling rate is closely related to the barrier
region’s electric field. After considering the electron’s initial energy should be
electric field’s function, we have the formulae [2], this is GSS internal tunneling
model parameters.

Generally tunneling happens when both sides of the pn junction are highly doped.
And the transit region is very narrow. Its breakdown voltage VB < 4Eg/q. For
example some special zener diode have stable voltage after the tunneling no matter
how much current go through, which is generally used for voltage stabilization.
Closed to NMOS source electrode, when n+ type’s source region and background
doping forms sharp junction, high voltage can also lead to tunneling phenomenon.

Different from Avalanche breakdown, tunneling breakdown does not happen at
certain VB suddenly. As electric field increase, tunneling rate increases continu-
ously, device’s current increases accordingly. So it is called soft breakdown.
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In this chapter the carrier transport models used in device simulation are dis-
cussed. The relationship between various models are illustrated in Figure (5.1).
We shall confine ourselves to the semi-classical transport models originated from
the Boltzmann transport equation. Quantum transport models are beyond the
scope of this book.

We shall start from the Boltzmann Transport Equation (BTE) first, and then
proceed to derive the two most widely used models, namely the drift-diffusion
(DD) model and the hydrodynamic (HD) model, by taking the low-order moment
equations. Since a number of simplifying assumptions have to be used to obtain
the DD and HD models, they have limited applicability. It is essential for users
of device simulators to appreciate the limitations of each models, which we shall
enumerate and discuss.

Figure 5.1: Relationship between common semiconductor transport models.
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5.1 Boltzmann Transport Equation
A piece of semiconductor material is said to be under thermal equilibrium when
there is no external field, and the temperature is uniform. The probability of
finding an electron occupying an energy state E(k) is, according to Fermi-Dirac
distribution

f0 =
1

1 + exp
[E(k) − EF

kbT

] . (5.1)

For non-degenerate semiconductor, it is usually adequate to use the simpler Boltz-
mann distribution function

f0 = exp
[
−

E(k) − EF

kbT

]
. (5.2)

The system deviates from equilibrium in the presence of external field or temper-
ature gradients, hence the distribution function of electrons deviates from f0. Let
f (k, r, t) be the non-equilibrium distribution function for electrons, the number of
electrons in the small volume r ∼ r + dr in real space, k ∼ k + dk in reciprocal
space, and at time t is

dN(k, r, t) = 2 f (k, r, t)dkdr, (5.3)

where the coefficient 2 accounts for the spin degeneracy. We turn to examine the
dynamic equation that governs the evolution of the distribution function f (k, r, t).

After a short period of time dt, the number of electrons in the same volume element
at time t + dt becomes

dN(k, r, t + dt) = 2 f (k, r, t + dt)dkdr. (5.4)

For small dt, we expand the above equation as a Taylor series, and take the lowest
order terms

dN(k, r, t + dt) = 2
[

f (k, r, t) +
∂ f
∂t

dt
]
dkdr (5.5)

Obviously, the number of electrons in the volume dkdr increases at the rate

2
∂ f
∂t

dkdr. (5.6)

Therefore the change in electron number is mainly due to the change in distribu-
tion function. In the following, we discuss the two processes leading to the changes
in distribution function, namely, the drift process and the scattering process.

5.1.1 Drift Process
The semi-classical motion of electrons, in the absence of collisions, causes the
distribution function to evolve in both k space and r space, whose rate is denoted

by
(
∂ f
∂t

)
d
. We know that at t+dt, the electron at position r came from r−vdt, where

v is the electron velocity. Similarly, the electron with wave vector k originally has
the wave vector k − (dk/dt)dt, where (dk/dt) represents the acceleration of the
electron under external field. As a result, the number of electrons in the volume
dkdr increases by

2
(
∂ f
∂t

)
d
dkdr = 2

[
f (k −

dk
dt

dt, r − vdt, t) − f (k, r, t)
]
dkdr/dt

= −2(
dk
dt
· ∇k f + v · ∇r f )dkdr.

(5.7)
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5.1.2 Scattering Process
Electrons are constantly being scattered, which causes abrupt changes in the wave
vector k of the scattered electrons. The electron distribution function changes ac-
cordingly. In the pervious section, it is seen that the distribution function deviates
from the equilibrium distribution f0 due to acceleration of electrons under exter-
nal field. In the contrary, the scattering process tends to restore the equilibrium
distribution. In fact, the distribution function can reach steady-state only in the
presence of scattering. The contribution of scattering to evolution of the distri-

bution function is denoted
(
∂ f
∂t

)
s
.

There are a dozen of different scattering mechanisms in semiconductor. The scat-
tering rate due to various mechanisms have very different functional form, but
are generally function of the electron wave vector k. The detailed calculation
of scattering process is almost always performed using Monte Carlo simulation,
due to the enormous complexity. In other types of simulators, relaxation time
approximation is used, where the scattering term is approximated by(

∂ f
∂t

)
s
= −

f − f0
τ(k)

, (5.8)

where f0 is the Fermi distribution in equilibrium state, and τ(k) the relaxation
time. It is obvious that when the external field is removed, the scattering process
causes the distribution function exponentially decays towards f0.

The carrier mobility used in numerical simulation are derived from the carrier re-
laxation time, with further approximations, where its dependence on k is replaced
by a simpler dependence on carrier energy E, or even treated as a constant. The
calculation of carrier mobility will be discussed in a separate section.

5.1.3 Boltzmann Transport Equation
We can now assemble the complete Boltzmann Transport Equation as follows

∂ f
∂t

= −
dk
dt
· ∇k f − v · ∇r f −

f − f0
τ(k)

. (5.9)

We learnt from Equation (2.31), that

dk
dt

=
F
~
. (5.10)

Therefore, we need an appropriate expression of the force due to external field F
to describe the carrier transport in semiconductor, which we will describe in the
following section.

5.2 Electromagnetic Field in Semiconductor
The charged carriers in semiconductor devices are driven by the electromagnetic
field in the device, and the force exerted on an electron is given by Lorentz force
law

F = e(E + v ×B). (5.11)

On the other hand, the electromagnetic field induced by these charged carriers
is described by, in general, the Maxwell’s equations, which must be coupled to

GeniEDA Corp. 43 GSS User’s Guide



5.2 Electromagnetic Field in Semiconductor Chapter5. Carrier Transport Equation

the transport equations described in the previous section. In semiconductor de-
vices, we can make some simplifications on the Maxwell’s equations, and use the
equivalent d’Alembert’s equations

∇2A −
1
c2

∂2A
∂t2

= −µJ (5.12)

∇2
ψ −

1
c2

∂2ψ

∂t2
= −

ρ

ε
(5.13)

∇ ·A +
1
c2

∂ψ

∂t
= 0 (5.14)

where A is the magnetic vector potential, ψ the electric The constants used include
the local speed of light c, the permittivity ε and magnetic permeability µ. When
substituted into Equation (5.11), we have

F = e(−∇ψ −
∂A
∂t

+ v × ∇ ×A). (5.15)

We now shall estimate the three terms in Equation (5.15) and assess their relative
importance. Let the characteristic length L and characteristic length τ be related
by the typical carrier velocity of 105m · s−1

v =
L
τ
� c, (5.16)

and by estimating the derivatives using the appropriate characteristic lengths, one
obtains

A
L2
−

1
c2

A
τ2

= −µJ (5.17)

ψ

L2
−

1
c2

ψ

τ2
= −

ρ

ε
(5.18)

A
L

+
1
c2

ψ

τ
= 0 (5.19)

From Equation (5.19) we have

A = −
L

c2τ
ψ, (5.20)

which simplifies Equation (5.15) to

F = e(
ψ

L
+

L2

c2τ2
ψ

L
−

vL
c2τ

ψ

L
) (5.21)

Since the last two terms in Equation (5.21) are smaller than the first term by

a factor in the order of
(v
c

)2
� 1, they can be safely dropped. The expression

for external force on carriers is therefore reduced to Equation (5.22). Similarly,
inspecting Equation (5.18), one sees that to obtain ψ, it is sufficient to solve
Poisson’s equation Equation (5.23).

F = −e∇ψ (5.22)

∇2
ψ = −

ρ

ε
(5.23)

The above discussion only considered field induced by the electric charge in the
device, we now turn to consider the effect of electromagnetic interference. Assume
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that the intensity of incident electromagnetic wave is 100 W · cm−2, which is a very
strong EM radiation. The corresponding electric field is E = 1.94 × 104 V · m−1,
and the energy deposited is in the order of 10−6 W, in a transistor with 1 µm gate
length. The internal electric field under 5 V operation voltage, in comparison, is
as high as 5×106 V · m−1. As a result, the effect of electromagnetic interference is
negligible in the calculation of semiconductor device characteristics. Even in mi-
crowave range, the wavelength is orders of magnitudes higher than the dimensions
of semiconductor devices. The micrometer-sized devices are extremely inefficient
as antenna. Therefore, the EM interference couples to the semiconductor devices
through the surge current induced in the PCB traces.

5.3 Drift-Diffusion Model
We shall derive the drift-diffusion model from the Boltzmann equation here and
highlight the simplifying assumptions. It is hoped that this would help illustrate
the applicability and limitations of the drift-diffusion model.

Firstly, the evolution of distribution function, which is usually a delicate balance
between the between the drift and scattering processes, is a smooth process. We
therefore have

∂ f
∂t
� −

F
~
· ∇k f − v · ∇r f , (5.24)

and the Boltzmann transport equation Equation (5.9) can be simplified to

F
~
· ∇k f + v · ∇r f = −

f − f0
τ

. (5.25)

Secondly, when the electric field is not too strong, the distribution function devi-
ates only slightly from the equilibrium distribution f0. With ∇ f ≈ ∇ f0, ∇k f ≈ ∇k f0,
we have

−
f − f0
τ

=
F
~
· ∇k f0 + v · ∇r f0. (5.26)

Further, recall that the distribution function at equilibrium is really the Fermi-
Dirac distribution function

f0 =
1

1 + exp
[

Ec(x,k) − EF(x)
kbT (x)

] . (5.27)

Assuming a single valley, parabolic, spherical band structure, Ec(x, k) can be writ-
ten as

Ec(x,k) = Ec0 − qψ(x) +
~2k2

2m∗
, (5.28)

where ψ(x) is the electrostatic potential due to the external field. We can now
proceed to evaluate the gradients of f ,

∇ f = f0(1 − f0)∇
(

qψ+ EF

kbT

)
; (5.29)

∇k f = − f0(1 − f0)
~2k

m∗kbT
. (5.30)
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Since

F = −qE = q∇ψ(x); (5.31)

v =
~k
m∗
, (5.32)

we can simplify Formulae (5.26) assuming uniform temperature in the device, or
∇T = 0,

f = f0 − τ f0(1 − f0)
v

kbT
· ∇EF . (5.33)

Finally, current density is calculated as the product of the group velocity and the
distribution function of electrons, integrated in the reciprocal space

Jn = −
q

4π3

∫
Vk

v · f dk. (5.34)

Substitute Equation (5.33) into Equation (5.34), we obtain

Jn = −
q

4π3

∫
Vk

v ·
[

f0 − τ f0(1 − f0)
v

kbT
· ∇EF

]
dk. (5.35)

Since f0 has even symmetry in k-space, while v has odd symmetry, we have∫
Vk

v · f0dk = 0, (5.36)

and hence

Jn = −
q

4π3

∫
Vk

−v · τ f0 (1 − f0)
v

kbT
· ∇EFdk. (5.37)

Since

EF = −qφn (5.38)

where φn is the electron Fermi potential, we have

n =
1

4π3

∫
Vk

f0dk; (5.39)

〈τ〉 =
m∗

kbT

∫
Vk

v · vτ f0 (1 − f0) dk∫
Vk

f0dk
, (5.40)

we obtain the final expression for electron current density Jn

Jn = −q2n∇φn
〈τ〉

m∗
= −qµnn∇φn, (5.41)

where electron mobility µn is defined as

µn = q
〈τ〉

m∗
. (5.42)

Similarly we have for hole current density

Jp = −qµp p∇φp. (5.43)

GeniEDA Corp. 46 GSS User’s Guide



Chapter5. Carrier Transport Equation 5.4 Hydrodynamic Model

It is seen from equation Equation (5.41) and Equation (5.43) that if carrier con-
centration and mobility are treated as constants, current density is directly pro-
portional to the gradient of Fermi potential. In order to write the current density
as the sum of drift current and diffusion current, which requires knowledge on the
gradient of carrier density, one need an explicit expression of carrier density. In
general, Fermi-Dirac distribution should be use for this purpose, but we shall use
the mathematically simpler Boltzmann distribution here, with the help of effective
intrinsic carrier concentration nie,

n = nie exp
[

q
kbT

(ψ − φn)
]

p = nie exp
[

q
kbT

(φp − ψ)
]
,

(5.44)

we find the Fermi potentials

φn = ψ −
kbT

q
ln

(
n

nie

)
φp = ψ+

kbT
q

ln
(

p
nie

)
.

(5.45)

Substituting into Equation (5.41) and Equation (5.43) we have

Jn = qµnnE + qDn∇n − qµnn
(

kbT
q
∇ ln nie

)
Jp = qµp pE − qDp∇p + qµp p

(
kbT

q
∇ ln nie

)
,

(5.46)

where E = −∇ψ, and diffusivity D is related to mobility µ according to the Einstein

relation Dn =
kbT

q
µn and Dp =

kbT
q
µp. The last term in each of the above two

equations represents current due to the gradient in intrinsic carrier concentration.
In a homogeneous semiconductor device with uniform temperature, ∇ ln nie = 0,
and the last term vanishes. This leads to the familiar expressions of drift-diffusion
current density

Jn = qµnnE + qDn∇n

Jp = qµp pE − qDp∇p
(5.47)

We shall summarize the limitations of the drift-diffusion model. The drift-diffusion
model is derived from the Boltzmann transport equation, but uses the equilibrium
carrier distribution function to approximate the actual distribution function. This
is a reasonable approximation at low field, but breaks down at high electric field.
Carriers accelerates under high electric field, and scattering is not sufficiently
strong to bring carrier temperature back to the lattice temperature. As a result,
these hot carriers have carrier temperature higher than the lattice temperature
used in Equation (5.27). Additionally, the distribution function becomes highly
asymmetric if the high-field region is very short (comparable to carrier mean-free
path). This asymmetry is of course not considered in the drift-diffusion model
either. Therefore, the drift-diffusion is only applicable when the electric field is
not too high, and the device dimension is not too small.

5.4 Hydrodynamic Model
We take the Boltzmann transport equation, multiply on the both sides Φ1 = 1,
Φ2 = ~k and Φ3 = ~2k2/2m∗, then integrate each equation throughout k-space.
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The resulting equations essentially dictates the carrier continuity , conservation
of momentum, and conservation of energy, respectively.

∂n
∂t

+ ∇ · (nu) =
(
∂n
∂t

)
coll

(5.48)

∂m∗nnu
∂t

+ ∇ · (m∗nnuu + nkTn) = −enE +
(∂m∗nnu

∂t

)
coll

(5.49)

∂nωn

∂t
+ ∇ · (nωnu + nkTnu) = −enE · u − ∇(−κn∇Tn) +

(
∂nωn

∂t

)
coll
. (5.50)

The independent variables are n is electron density, u the average electron velocity
and Tn the electron temperature. Additionally we have the internal energy of

electron gas ωn =
3
2

kTn +
1
2

m∗nu2, and the heat flux −κn∇Tn where κn is electron
thermal conductivity.

Similarly we have the hydrodynamic equations for holes

∂p
∂t

+ ∇ · (pv) =
(
∂p
∂t

)
coll

(5.51)

∂m∗p pv

∂t
+ ∇ · (m∗p pvv + pkTp) = epE +

(∂m∗p pv

∂t

)
coll
, (5.52)

∂pωp

∂t
+ ∇ · (pωpv + pkTpv) = epE · v − ∇(−κp∇Tp) +

(∂pωp

∂t

)
coll

(5.53)

where p is the hole density, v the average hole velocity, Tp the hole temperature,

ωp =
3
2

kTp +
1
2

m∗pv2 the hole internal energy, κp the hole thermal conductivity.

In Equation (5.48) and Equation (5.51), the collision terms can be expressed in
terms of carrier generation and recombination,(

∂n
∂t

)
coll

=
(
∂p
∂t

)
coll

= G − R. (5.54)

According to Baccarani and Wordeman, the collision term in the momentum and
energy conservation equations takes the following forms with the relaxation time
approximation,(∂m∗nnu

∂t

)
coll

= −
m∗nnu
τn

p
τn

p = m∗n
µn0

e
Tn

T0
(5.55)(∂m∗p pv

∂t

)
coll

= −
m∗p pv

τ
p
p

τ
p
p = m∗p

µp0

e
Tp

T0
(5.56)

(
∂nωn

∂t

)
coll

= −
nωn −

3
2nkT0

τn
ω

τn
ω =

m∗n
2
µn0

e
T0

Tn
+

3
2
µn0

ev2
ns

TnT0

Tn + T0
(5.57)(∂pωp

∂t

)
coll

= −
pωp −

3
2 pkT0

τ
p
ω

τ
p
ω =

m∗p
2
µp0

e
T0

Tp
+

3
2
µp0

ev2
ps

TpT0

Tp + T0
(5.58)

where T0 is the lattice temperature, µn0 and µp0 the electron and hole mobility,
vns and vps the saturate velocity of carriers. This model accounts for the phonon
scattering and ionized impurity scattering.

GeniEDA Corp. 48 GSS User’s Guide



Chapter5. Carrier Transport Equation 5.5 Carrier Mobility

Starting from the hydrodynamic model, we can arrive at the drift-diffusion model
with some further simplifications. If the first two terms in the electron momentum
conservation equation are dropped, one obtains

Jn = −enu =
e2

m∗n
τn

pnE +
e

m∗n
kTLτ

n
p∇n. (5.59)

Similarly, for holes, one has

Jp =
e2

m∗p
τ

p
p pE −

e
m∗p

kTLτ
p
p∇p. (5.60)

If one defines the carrier mobility as

µn = τn
p

e
m∗n

(5.61)

µp = τ
p
p

e
m∗p

(5.62)

we see the familiar formulae of drift-diffusion current density

Jn = eµnnE + eµn(
kTL

e
)∇n (5.63)

Jp = eµp pE − eµp(
kTL

e
)∇p. (5.64)

5.5 Carrier Mobility
Carrier mobility has pivotal importance in the study of carrier transport in semi-
conductors. From the discussion in the two proceeding sections, it is obvious that
carrier mobility is closely related to the effective mass and the scattering rate
of carriers. Higher effective mass or higher scattering rate would lead to lower
carrier mobility. The carrier effective mass has been discussed in "Energy Band
Structure Of Semiconductor", on page 12. In this section, we shall discuss a few
dominant scattering processes in semiconductor devices, and their contribution to
the carrier mobility.

Before we enumerate the various scattering mechanisms, we shall first consider
the problem of how these scattering mechanisms combine to give the total scat-
tering rate, and hence the combined carrier mobility. Assuming the scattering
mechanisms are independent of each other, the total scattering rate is simply the
sum of that of the individual scattering processes. However, from Equation (5.40)
and Equation (5.42), one sees that the calculation of mobility requires knowledge
of the carrier distribution function. The exact shape of the distribution function
is not available in either the drift-diffusion model or the hydrodynamic model,
which makes the rigorous calculation of carrier mobility impossible. In practice,
we consider the carrier mobility in the near equilibrium situation. The mobility
due to each individual scattering mechanism is first calculated from the respective
scattering rates, and the total mobility is calculated using Matthiessen’s rule

1
µ

=
1
µ1

+
1
µ2

+
1
µ3

+ . . . (5.65)

where µ is the total mobility, while µ1, µ2 etc. are the mobility due to individual
scattering mechanisms.

Phonon scattering is one of the most dominant scattering mechanism in semi-
conductor devices. The band structure derived in "Energy Band Structure Of
Semiconductor", on page 12 assumes that atoms in the crystal are all stationary,
in which case carriers can propagate with Bloch wave function without scattering.
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However, the thermal motion of atoms cause them vibrate around the equilib-
rium position on the lattice, which alters the crystal potential and hence the band
structure. Intuitively, one can think of electrons travelling along a bumpy con-
duction band, with humps and dips induced by slight displacement of atoms in
the lattice. The lattice vibration propagate in the lattice as phonon. As temper-
ature increases, the number of phonon increases (stronger lattice vibration), and
the phonon scattering rate increases. The approximate relationship between the
phonon limited mobility in bulk silicon and the temperature is

µphonon ∝ T−3/2 (5.66)

Ionized impurity scattering is another important scattering mechanism in semi-
conductors. The ionized dopants are charged and deflect carriers that pass by.
The scattering rate depends on not only the density of ionized impurities, but
the carrier energy as well. With higher concentration of ionized impurities, the
scattering rate is higher. On the other hand, electrons with higher kinetic energy
pass by the ion more quickly, and is hence less probable to be scattered. Since
the average kinetic energy of electrons is directly related to the carrier temper-
ature, the ionized impurity scattering strongly depends on temperature. With
the increase in temperature, scattering reduces, and the ionized impurity limited
mobility increases as

µcoulomb ∝ T3/2 (5.67)

As one lowers the temperature, the phonon scattering becomes weaker, and the
ionized impurity scattering becomes dominant. This temperature dependence is
especially pronounced in highly doped semiconductors. Figure (5.2) shows the
dependence of electron mobility in bulk silicon, when both phonon scattering and
ionized impurity scattering are considered.

Figure 5.2: Temperature dependence of electron mobility of silicon.

In practice, empirical models are developed to describe the carrier mobility at
various doping concentration, temperature, and electric field. Contribution from
various scattering mechanisms are all incorporated in these unified models [3].

Apart from the two dominant mechanisms described above, there are a few other
scattering processes that are important in some specific situations.

Electron-hole scattering is important in power electronics devices, because these
devices often operate in high-level injection where carrier concentration exceeds
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the doping concentration. Advanced mobility models such as the Philips model
includes the contribution of electron-hole scattering [4][5].

At very low temperature dopants are not completely ionized, and those not ionized
are electrically neutral. These neutral impurities are perturbation to the periodic
crystal potential, and are scatterers to carriers as well. The effect of scattering
from these neutral defects is observable only when phonon scattering and ionized
impurity scattering are both very weak.

In MOSFET transistors, most current flows through the inversion layer at the
semiconductor/insulator interface. The inversion carrier mobility is significantly
different from that in the bulk semiconductor, and is important to surface-type
devices such as the MOSFETs. Since carriers are confined in the very thin in-
version layer, quantum mechanical effects is strong, which changes the density of
states and hence the carrier mobility. When one increase the electric field perpen-
dicular to the interface, e.g. by increasing the gate voltage, the inversion carriers
are confined in a narrower inversion layer. As a result, the density of states in
the inversion layer increases; carriers see more states to scatter to, and carrier
mobility decreases. Another interface related scattering mechanism is the surface
roughness scattering. With increasing perpendicular electric field, the carriers are
confined closer to the interface, which leads to higher surface roughness scattering
rate. Separate mobility model are developed to include the above effects related
to the perpendicular E-field near the semiconductor/insulator interface.

Generally, when electric field is low, carrier drift velocity is directly proportional to
the driving electric field, where the carrier mobility serves as the linear coefficient.
However, under high electric field (parallel to the direction of electron transport),
this linear relationship breaks down. Carrier mobility decreases with increasing
field, while beyond a critical field, carrier velocity saturates to a constant value.
Carrier mobility must therefore be adjusted to account for this velocity satura-
tion effect under high parallel electric field. Figure (5.3) and Figure (5.4) show
the relationship between carrier velocity and driving electric field for silicon and
GaAs. Note that the carrier velocity in GaAs reaches a maximum at E-field of
4 kV · cm−1, beyond which velocity declines. This leads to negative differential
resistance in GaAs, which is useful in generating microwave oscillations.

Figure 5.3: Silicon drift speed and electric field relationship

GeniEDA Corp. 51 GSS User’s Guide



5.6 Constants in Semiconductors Chapter5. Carrier Transport Equation

Figure 5.4: GaAs drift speed and electric field relationship

5.6 Constants in Semiconductors
In this section, we shall discuss two important constants in semiconductors,
namely the Debye length and the dielectric relaxation time.

Debye length was first used in plasma physics to characterize the range in which a
charge perturbation has effects on other particles. Debye length in semiconductor
physics carries a similar significance. Consider a large piece of semiconductor with
n-type doping, the potential in the sample is governed by the Poisson’s equation

ε
d2ψ

dx2
=
ε

q
d2Ec

dx2
= −q (ND − n) . (5.68)

We used the conduction band minimum as the reference potential, while holes are
ignore due to the low concentration

Ec (x) = Ec (ψ = 0) + qψ (x) . (5.69)

Since

n = Nc · exp
(
−

Ec − EF

kbT

)
, (5.70)

the Poisson’s equation can be written as

ε

q
d2Ec (x)

dx2
= −q

(
ND − Nc · exp

(
−

Ec − EF

kbT

))
. (5.71)

In order to simplify the above equation, we write the conduction band as

Ec (x) = E0
c + ∆Ec (x) , (5.72)

where E0
c is the conduction band energy at equilibrium, which is a constant, ∆Ec

is the band bending due to the disturbance. Noting that we have ND = n0 at
equilibrium,

Nc · exp
(
−

Ec − EF

kbT

)
= Nc · exp

(
−

E0
c − EF

kbT

)
· exp

(
−

∆Ec (x)
kbT

)
= ND · exp

(
−

∆Ec (x)
kbT

) (5.73)

The Poisson’s equation is now simplified to

d2∆Ec

dx2
= −

q2ND

ε
·

[
1 − exp

(
−

∆Ec (x)
kbT

)]
. (5.74)
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When we are not too far from equilibrium, we have ∆Ec � kbT , and the above
equation can be linearized as

d2∆Ec

dx2
=

q2ND

ε
·
∆Ec (x)

kbT
(5.75)

Analytical solution is now possible, where Debye length is defined as the charac-
teristic length

LDb =

√
εkbT
q2ND

. (5.76)

The change in conduction band is therefore

∆Ec (x) = ∆Ec (x = 0) · exp
(
−

x
LDb

)
. (5.77)

One can easily obtain the expression of Debye length for p-type semiconductors

LDb =

√
εkbT
q2NA

(5.78)

The relationship between Debye length and doping concentration is shown in
Figure (5.5). High doping concentration leads to very small Debye length. In
the meshing stage of semiconductor simulation, the Debye length is an important
parameter. In order to capture the spatial variation of carrier concentration, the
dimension of the mesh grids in critical device regions must be less than the Debye
length.

Figure 5.5: Debye length as a function of doping concentration.

While the Debye length determines the length scale in which a charge disturbance
is effective, the other scaling constant, namely the dielectric relaxation time, de-
termine the time scale in which majority carriers can respond to a charge pertur-
bation. In order to obtain the dielectric relaxation time, we start again from the
electrostatic equation.

dE (x, t)
dx

= −q
∆ρ (x, t)

ε
, (5.79)

where ∆ρ is the change in carrier concentration, and ∆E is the resulted change
in electric field. We then turn to the continuity equation, and note that in the
low field, near-equilibrium case, carrier generation-recombination can be ignored,
and the incremental carrier ∆ρ contributes little current. The continuity equation
thus contains only the drift current term

∂∆ρ
∂t

= −qµρ
∂E (x)
∂x

. (5.80)
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Combining the continuity equation and the electrostatic equation, we have

∂∆ρ
∂t

= −
qµρ
ε
·∆ρ. (5.81)

Solving this equation we obtain

∆ρ (x, t) = ∆ρ (x, 0) · exp
(
−

t
τd

)
(5.82)

where the dielectric relaxation time is defined as

τd =
ε

qµρ0
. (5.83)

Assuming ρ0 = ND for n-type doped semiconductor, and ρ0 = NA for p-type
doped semiconductor, we can relate the Debye length, the Einstein relation and
the dielectric relaxation time with

τd =
L2

Db

D
. (5.84)

In the numerical simulation of semiconductor devices, the dielectric relaxation
time is an upper bound to the time steps. Discretizing Equation (5.81) yields

∆ρ (∆t) = ∆ρ (0) −
∆t
τd

∆ρ (0) , (5.85)

where ∆t is the time step, and ∆ρ is the resulting update to the carrier con-
centration. Obviously, if ∆t > τd, ∆ρ will change sign at every step, and the
numerical solution will oscillate with amplitude ∆ρ, which is unphysical. For
semiconductors with high carrier mobility, τd is small. For example GaAs has
µ = 6000cm2 ·V−1 · s−1, so we have τd ≈ 10−15s when doping level is 1018cm−3.
The time steps can not exceed this value in numerical simulation if explicit time-
discretization methods. Such short time steps is intolerable in practice, therefore
implicit discretizations, which offers guaranteed numerical stability, must be used.
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Chapter 6 Semiconductor Contact
Interface

In semiconductor manufacturing, we can not avoid semiconductor contact with
other material. For example by using vacuum evaporation, sputter deposition and
other method’s semiconductor surface to form metal film and leading to semicon-
ductor metal contact or semiconductor surface SiO2 film, leading to semiconductor
insulator interface. Semiconductor numerical software has to be able to deal with
these kinds of interface.

6.1 Semiconductor and Metal Contact
Metal and semiconductor’s contact has two type. Super low contact resistance
contact and similar as PN junction’s single direction Schottky contact. In semi-
conductor device and integrate circuit manufacturing, these two type of contacts
are generally used.

6.1.1 Semiconductor and metal contact potential barrier
First let us explain the work function concept. The valance band electron inside
metal needs to have very high energy in order to jump out the metal, in another
word, the outside system has to do some work in order to bring out the electron.
This work’s average value is electron’s overflow work, or work function. Metal’s
electron work function ΦM is defined as

ΦM = E0 − EF (6.1)

E0 is metal surface vacuum static electron’s energy, EF is electron’s Fermi energy
level. Obviously work function represents the bundling ability of metal. For
semiconduction, electron work function ΦS is defined as

ΦS = E0 − EF (6.2)

Because EF changes with the variation of doping concentration level, ΦS is related
to doping concentration. Besides, semiconductor electron affinity is defined as

χ = E0 − Ec (6.3)

Because metal and semiconductor’s work function are different, there will be con-
tact potential difference when they are contacted. Simultaneously there is space
charge at one side of the semiconductor, the corresponding energy band starts to
bend.

ΦS (eV)

Semiconductor χ(eV) N-Type NDcm−3 P-Type NAcm−3

1014 1016 1018 1014 1016 1018

55



6.1 Semiconductor and Metal Contact Chapter6. Semiconductor Contact Interface

Si 4.17 4.494 4.375 4.256 4.951 5.070 5.147

Ge 4.00 4.297 4.180 4.061 4.377 4.495 4.571

GaAs 4.07 4.289 4.170 4.050 5.206 5.325 5.444

Table 6.1: Semiconductor work function: from GSS database

Metal ΦM(eV) Metal ΦM(eV) Metal ΦM(eV)

Au 5.47 < 100 > Al 4.06 < 110 > Cu 4.48 < 110 >

Pt 5.93 < 111 > Pb 4.25 polycr W 4.55 polycr

Table 6.2: Some metal material’s work function[6]

Consider metal and n type semiconductor’s contact, and set ΦM > ΦS , when they
are not contacted, the energy band is shown as Figure (6.1), Because ΦM > ΦS ,
semiconductor’s fermi energy is higher than metal’s fermi energy, when they are
closely contacted, semiconductor’s electron will flow to metal, so that the surface
of metal has negative charge, semiconductor surface forms positive space charge
layer, producing inner electric field pointing from semiconductor to metal. This
field will stop electron’s further movement inside metal, so that the whole system
reaches stability. Now the metal and semiconductor’s Fermi level is at the same
level, shown in figure Figure (6.2). Then metal and semiconductor have contact
potential difference, although metal has transition layer, due to electron density
inside metal are several order bigger than semiconductor, the transition layer
is at several atomic distance level, which can be neglected usually. So we can
consider the contact potential is all at the semiconductor’s space charge layer.
From figure Figure (6.2), we know semiconductor’s conductor band electron has
to pass the potential barrier qVbi = ΦM − ΦS . Besides semiconductor potential
barrier is due to energy band bending up, electron density is much less than
balanced concentration. Accordingly it is a high resistance region, which is also
called electron stop layer. Also the electron in the metal has to overcome potential
barrier ΦB = ΦM − χ to reach the other side of semiconductor. This electron
stopping layer is first studied by Schottky. So it is also called Schottky contact.
ΦB is called Schottky barrier height. Schottky barrier height is not related to
doping concentration, it is only related to semiconductor and metal material.

Figure 6.1: Energy level before contact

If n type semiconduction’s work function is bigger than metal, ΦS > ΦM, electron
will from from metal to semiconductor when they are contacted. There will be
negative space charge region in side semiconductor and the space charge region’s
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Figure 6.2: Energy level after contact

Figure 6.3: Different work function’s metal and n type semiconductor’s contact

energy band will bend down shown as Figure (6.3). This condition’s conduction
band electron and metal’s electron need not overcome potential barrier to reach
the other side, and the semiconductor interface space charge region has much
more electron contraction than balanced concentration. This electron deposition
region’s conductivity is very good, also called anti electron stopping layer.

When metal and p type semiconductor contact, the condition forming stopping
layer and anti stopping layer is just reverse to n type semiconductor. When
ΦS > ΦM, hole will flow to metal and let metal surface be positively charged,
semiconductor surface has negative space charge layer, energy band bends down,
shown as Figure (6.4). It is hole stopping layer, hole needs to overcome potential
barrier ΦS −ΦM to reach the metal, and holes inside the metal, empty state with
Fermi level as EFM, needs to overcome ΦB = χ+ Eg −ΦM to reach semiconductor.
Here hole exchange means electrons inside metal exchange with semiconductor
valance band electrons. Electrons from metal to semiconductor’s conduction band
top needs to increase energy ΦS −ΦM, and the electron from semiconductor needs
to increase energy ΦB = χ + Eg − ΦM to reach EFM. If metal contact p type
semiconductor with ΦS < ΦM, similarly we know the energy band bend up to
form hole anti stopping layer.
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Figure 6.4: Metal and p type semiconductor’s contactΦS > ΦM

6.1.2 Schottky contact’s current relationship
Experiment proves that metal semiconductor contact formed Schottky potential is
similar as pn junction’s rectifying characteristics. Figure (6.5) gives a metal and n
type semiconductor formed ideal Schottky barrier. Assume electron density inside
the barrier is 0, we can obtain potential’s width and inner electric field value from
potential height and semiconductor doping concentration.

d2φ

dx2
= −

qND

εsε0
(6.4)

Consider Schottky interface at x = 0, boundary condition is φ(0) = 0, φ(W) = Vbi

and E(W) = −∇φ(W) = 0, W is Schottky barrier width, shown in Figure (6.5).
Solve the above partial differential equation, we can have potential barrier width

W =

√
2εsε0Vbi

qND
(6.5)

Potential barrier’s electric potential distribution

φ(x) = Vbi −
qND

2εsε0
(W − x)2 (6.6)

But in application, normally we use triangle to approximate potential barrier,
then

φ(x) = Vbi

(
1 −

x
W

)
(6.7)

Figure (6.6) shows metal and n type semiconductor formed Schottky contact elec-
tron and hole’s four different moving method: (A)represents net electron flow
overcomes potential barrier, important for Schottky junction’s IV characteristics;
(B)represents electron tunnels through quantum mechanic effect to go through
the barrier, normally it is considered together with Schottky potential barrier.
Used to correct (A)’s current. (C)represents electron’s recombination, discussed
previously. (D)represents hole goes through metal overcome barrier Eg −ΦM into
semiconductor’s process, called minority carrier injection. It follows same injec-
tion rule with (A), and normally leads to very small current. For (A)’s process
there are two theories, thermionic electron injection theory and diffusion theory.
We are going to introduce simply, the detail explanation can be found in [7].

Thermionic electron injection theory is proposed by Bethe. For high mobility
carriers, the average mean free path is big and potential barrier is thin, electron’s
collision inside the barrier is neglected, then whether electron can go through the
barrier is limited by barrier height. When electron’s kinetic energy is higher than
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Figure 6.5: Ideal Schottky contact’s potential distribution

Figure 6.6: n type Schottky contact’s current characteristics

potential barrier, electron can freely go through the barrier to the other side.
Consider with voltage bias VA’s condition, potential is used to increase EF , the
electron current from semiconductor to metal is composed of electrons with energy
high than EF + ΦB’s directional movement. After simply leading we have:

JS→M = q

∞∫
EF+ΦB

vxdn =
4πm∗nqk2

b

h3
T2e−ΦB/kbT eqVA/kbT

= A∗T2e−ΦB/kbT eqVA/kbT

(6.8)

However the electron current from metal to semiconductor keeps constant, equal
to electron current from semiconduction to metal at VA = 0.

JM→S = JS→M

∣∣∣∣
VA=0

= A∗T2e−ΦB/kbT (6.9)

So the total current is

Jtot = JS→M − JM→S = A∗T2e−ΦB/kbT
(
eqVA/kbT − 1

)
(6.10)

A∗ is effective Richardson coefficient,

A∗ = 120(m∗n/m0) A/cm2 ·K2 (6.11)

Because parameter involves electron’s effective mass at the interface m∗n, so it is
related to material’s band structure, most of the cases, A∗ has to be decided by
experiments.
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Diffusion theory is proposed by Schottky, consider current is limited by semicon-
ductor region’s drift diffusion movement.

J = qµnn
dEF

dx
= µnNckbTe−Ec/kbT d

dx

(
eEF/kbT

)
(6.12)

Express space charge region’s potential with triangle potential, solve the partial
differential equation above, we can have the current relationship:

J = qNcµnFmaxe−ΦB/kbT
(
eqVA/kbT − 1

)
(6.13)

Fmax is potential barrier’s electric field density

Fmax =

√
2qND (Vbi − VA)

εsε0
(6.14)

Then we have the current expression as

J = qNcµn

√
2qND (Vbi − VA)

εsε0
e−ΦB/kbT

(
eqVA/kbT − 1

)
(6.15)

In diffusion theory, current increase’s limitation is not how electron overcome
the potential barrier, but the semiconductor’s mobility. So it is suitable for low
mobility semiconductor material to form Schottky contact.

In fact most of the semiconductor material as Si, Ge, GaAs mobility are all high,
thermionic electron injection theory is suitable. Only some low mobility material
for example Cu2O, amorphous silicon and CVD’s CdS poly film and etc, diffusion
theory are suitable.

Figure (6.7) shows the Schottky barrier’s variation with different bias. Forward
bias lowers potential height, more electrons move from semiconductor to metal,
shown in Figure (6.7)’s (b); reverse bias increase the potential height, electron
will move from semiconductor to metal more difficultly. shown in Figure (6.7)’s
(c). However metal to semiconductor’s thermionic electron injection is stable,
formation is shown in Figure (6.7)’s (d)’s reverse current.

Figure 6.7: Schotty diode’s forward and reverse IV characteristics

In real application,we always find Schottky junction’s IV characteristic is different
from Figure (6.7)’s ideal model, it is because the barrier height decreases as the
bias increases and the tunneling effects influence.

GeniEDA Corp. 60 GSS User’s Guide



Chapter6. Semiconductor Contact Interface 6.1 Semiconductor and Metal Contact

Mirror force is the main factor leading to Schottky barrier decreases. A electron
outside metal will induct a same value positive charge, the inducted charge’s at-
traction to this electron is called mirror force. Now electron is not only affected
by potential barrier but also the mirror force, shown in Figure (6.8) When elec-

Figure 6.8: Mirror force leading potential barrier decrease

tron is x distance from potential barrier, the inducted charge at −x position, the
electron’s mirror force is

fimage(x) = −
q2

4πεsε0 (2x)2
= −

q2

16πεsε0x2
(6.16)

Corresponding mirror potential

φimage(x) = −
q

16πεsε0x
(6.17)

The electron potential on electron is the sum of mirror potential and electric field
potential. Assume triangle potential barrier, the electric field E is a constant, we
have

φ(x) = −
q

16πεsε0x
− Ex (6.18)

Solve the derivative of the formulae above, we have the potential barrier’s maxi-
mum point.

xm =
√

q
16πεsε0E

(6.19)

Potential barrier decrease

∆Φ = φ(xm) =
√

qE
4πεsε0

(6.20)

Accordingly when electric field is strong, potential barrier decreases a lot. Reverse
voltage is high, the mirror force’s effect will be obvious, which leads to reverse
current increase.

For quantum mechanical tunneling current, the canonical method can not de-
scribe, normally we use empirical formulae to correct. The correction of barrier
decrease due to tunneling current is

∆Φ = αEγ (6.21)

α and γ’s value can be found in [8].
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6.1.3 Ohmic contact
Ohmic contact is the low contact resistance metal semiconductor contact. This
contact can have relatively big current and the contact’s voltage drop is negligible.
The ideal case to form ohmic contact to is to form anti stopping layer, then the
contact will not form electron or hole potential barrier. It forms a high conduction
region. But because the limitation of surface state and metal material, ti is diffi-
cult to make the ohmic contact. Normally we use highly doped regions through
implantation and diffusion at the semiconductor surface to form thin Schottky
contact with high tunneling current to realize it.

Figure (6.9)(a) illustrates a n type Schottky contact, when potential barrier is
enough thin the electron can go through the barrier freely, but the hole’s diffusion
is limited by potential barrier, which is equal to low surface recombination rate.
This contact only let electron go through. If we adopt figure Figure (6.9)(b)’s
structure, and doped high recombination rate centers. Recombination center can
sustain the carrier concentration balance. This contact electron and hole can both
go through. This is because the assumption of surface recombination rate to be
infinity. The hole arrived to the surface will be recombined, the lost electron can
be balanced by tunneling electrons from metal to semiconductor, which is similar
to hole go through the interface.

Figure 6.9: With low and high surface recombination rate’s ohmic contact

6.2 Metal-Oxide-Semiconductor Structure
Metal-oxide-semiconductor contact (MOS) is CMOS device’s basic structure.
CMOS devices dominates current integrate circuit’s production. Accordingly
MOS structure is carefully studied. We only give simple introduction here.

Consider ideal MOS structure shown in Figure (6.10), assume it satisfy the fol-
lowing condition (1) metal and semiconductor’s work function difference is 0; (2)
the insulator layer does not have any charge absolute insulate. (3) the insulator
and semiconductor interface does not have any interface state. Then we have the
energy level relationship:

ΦM = ΦS = χ+ Ec − EF (6.22)

We discuss the ideal MOS structure’s metal and semiconductor under vertical
electric field below, semiconductor surface layer’s electric potential and electric
charge distribution status.

GeniEDA Corp. 62 GSS User’s Guide



Chapter6. Semiconductor Contact Interface 6.2 Metal-Oxide-Semiconductor Structure

Figure 6.10: Ideal MOS structure

We notice, MOS structure is actually a capacitor device. So when metal and
semiconductor is biased, the insulator’s each side with metal and semiconductor
will be charged. The charge will have reverse sign and the charge distribution
status is different. In the metal, the free electron density is very high, charge is
basically distributed at one atomic layer’s thickness; however the semiconductor’s
carrier density is much lower, the charge distribution is at a certain thickness
layer, which is called space charge region. In space charge region, from the surface
to the inner body the electric field decreases. In another word the potential in
space charge region will change continuously, so that the semiconductor surface
has potential difference to the internal semiconductor body, simultaneously the
energy band starts to bend.

Consider p type semiconductor’s ideal MOS structure, semiconductor side is
grounded, metal is biased with VG. Energy band variation is

EF,metal − EF,semiconductor = −qVG (6.23)

Attention, electron energy is −qV, when V)G < 0, electron energy increases, sur-
face potential is negative, surface energy band bend up, shown in figure Figure
(6.11). At thermal balanced condition, semiconductor fermi energy should keep
constant, so band top will turns to Fermi energy level as it is close to surface.
simultaneously the valance band’s hole concentration increases to form accumu-
lation layer. From the figure we can notice hole’s concentration increase when it
goes to the surface. It means the hole is mainly distributed close to the inter-
face. When metal and semiconductor is positively biased VG >, surface potential
is positive, the surface energy band bends down, shown in Figure (6.12). Then
the closer to the surface, the further away the Fermi energy level to the valance
band top. The hole concentration decreases accordingly. At close to the surface
certain distance region, the top of valance band is much lower than Fermi level.
According to Boltzmann distribution, we know the surface hole concentration will
be much less than that of the internal body. The surface layer’s negative charge
is almost equal to acceptor concentration NA, surface layer’s this status is called
depletion.

When the positive bias between metal and semiconductor keep increasing, the
energy band at the surface will bend more down, shown in Figure (6.13). Then
the surface Fermi level can be higher than band gap’s middle energy Ei. Then the
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Figure 6.11: PMOS with bias VG <
0’s energy band diagram

Figure 6.12: PMOS with bias VG >
0’s energy band diagram

Fermi level to conductor band bottom is closer than the distance to valance band,
the surface electron concentration will be higher than the hole concentration to
form reverse type of doing in the surface, called inverted layer. From Figure (6.13)
we notice, inversion layer is very close to the surface. From the inversion layer to
the body there is one depletion layer inside. In this circumstance, semiconductor
space charge layer’s negative charge is composed of two parts, one parts is deple-
tion layer is dominated by acceptor charge NA, the other part is inverted layer’s
electrons. The latter one is close to the surface. When surface electron concen-

Figure 6.13: PMOS with biasVG � 0’s energy band diagram

tration is equal to inner body hole concentration, which satisfy the energy band
relationship Ei,sur f ace − Ei,bulk = 2[EF − Ei,bulk], surface has enough electron concen-
tration to conduct, which is called strong inversion, the corresponding voltage is
called threshold voltage VT .

For n type semiconductor, the accumulation, depletion and inversion layer’s volt-
age is just reverse. When metal and semiconductor is positively biased the surface
electrons accumulate; with negative bias between metal and semiconductor, the
semiconductor surface deplete, when the absolute voltage value increase, the sur-
face invert to hole dominate region shown in Figure (6.14).

In fact MOS structure still need consider some non ideal factors, mainly included
three correctons: generally metal side’s work function is different from semiconduc-
tor side’s work function. Then it is same as ideal MOS structure with additional
potential barrier between metal and semiconductor; if consider stable charge in-
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Figure 6.14: NMOS with bias energy band diagram

side the oxide, Poisson equation needs to have stable charge’s influence; Silicon
and silicon dioxide’s interface state needs also to be considered, Poisson equa-
tion’s interface condition needs to be corrected as additional area electric charge’s
material interface.

From canonical theory point of view, MOS structure is not complicate. If we
don’t not consider inversion two dimension electron gas and electron tunneling
through oxide process, silicon dioxide interface is a solid wall for carriers. The
electric field is totalled described by Poisson equation. Theoretically with certain
carriers’ distribution function we can have semiconductor side’s physical variable’s
analytical formulae, we are going to discuss some theocratical solution in MOS
device’s numerical cases.

6.3 Semiconductor hetero-junction
Semiconductor hetero-junction is composed by two different semiconductor ma-
terials. Because the hetero-junction is composed of two different semiconductor
with different band gap width Eg and other different physical characteristics, so it
has certain special performance. Well use and control the performance can make
some valuable semiconductor devices. For example hetero bipolar junction tran-
sistor (HBJT), high electron mobility transistor (HEMT) and etc. have very big
application value in micro wave and high frequency domain.

Hetero-junction both side conductor material type is different is called hetero-type
hetero-junction, structure is nP or Np, the capital letter represents the material
with wider band gap; when both side of semiconductor have same type of doping,
it is called same type hetero-junction nN or pP. In fact hetero-junction contact
band structure is similar to semiconductor metal contact. The following Figure
(6.15) illustrates the Np type hetero-junction energy band diagram. Its feature
is interface has energy band edge split peak. Assume Φ1and Φ2, χ1and χ2 are
N type and p type semiconductor’s work function and electron affinity, ∆Ecand
∆Ev are their conductor band bottom energy difference and valance band top
energy difference. When both side contact to pn junction, because Φ2 > Φ1, EF1is
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Figure 6.15: Np type hetero-junction energy band

higher than EF2, so electron shifts from n type material to p type material until
EF1=EF2. At the contact place p type material side there is a negative charge
layer, n type region there is a positive charge area with the same charge amount.
In this space charge region, the potential increases from p type to n type, energy
band bends. Interface point P type semiconductor valance band bend down, n
type semiconductor conduction band bend up. However ∆Ec = χ1 − χ2 remains
the same. There is no spike.

Figure (6.16) shows the thermal stable state’s Nn hetero-junction energy band
diagram. Same type hetero-junction interface energy band is also not continuous.
The different from hetero type hetero-junction is same type heter-junction narrow
band gap side’s space charge region is electron accumulated layer, the wide band
gap region is depleted layer. The hetero type hetero-junction both side’s space
charge regions are depleted regions.

Figure 6.16: Nn type hetero-junction energy band

Hetero-junction’s current characteristics is very complicate problem, there are dif-
ferent models for different conditions, for example diffusion model, injection model,
injection - recombination model, tunneling - recombination model and etc. How-
ever there is not uniform theory to describe hetero-junction’s IV characteristics.
As limited by canonical theory, GSS only realizes the similar model as Schottky
contact’s thermionic model, the detail realization is in "Hetero-junction", on page
131.
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PART II. Semiconductor
Drift Diffusion Model

Reader’s Guide
Since Schokley gives the basic semiconductor theory, people are used to use analyt-
ical method to analyze the semiconductor devices. Analytical models are based
on certain assumptions and analysis, give certain mathematical description on
physics and electrical characteristics. Analytical model is convenient and proved
to be efficient by many experiments. However it is difficult to get the analytical
solution. So normally it is only used to deal with one dimensional problems. And
a lot of assumptions are needed, accordingly the accuracy is not high, sometimes
it is hard to represent the psychical effects.

As the very large scale integrated circuit’s (VLSI) development, this one dimen-
sional analysis can not satisfy the request. Two dimension and three dimension’s
analysis turns to be on the schedule. Numerical model evolves accordingly. Com-
pared to analytical model, numerical model starts from the basic semiconductor
models, following the geometry structure boundary, constructing strict mathe-
matical model, and then using numerical method to get the device characteristics.
Obviously numerical model is more accurate than analytical model. Solving pro-
cedure is also more complicate than analytical method. In small dimension device
domain, complicate carriers’ transportation process can only be solved by numer-
ical method.

Semiconductor device numerical method mainly has Monte Carlo (MC) method
and continuous material method. MC needs to calculate the Boltzmann trans-
portation equation of semiconductor, the calculation expenditure is huge. And if
the high energy carriers distribution has relations or have low concentration at
certain area, MC method has different results with different simulations, which
can not satisfy the device simulation request. The later solution is to use the
Boltzmann transportation equation’s low order equations. By omitting the high
order items in the equation, we can get a series of complicate mechanic models,
including fluid dynamics model and drift diffusion model. These models have low
expenditure of calculation than Boltzmann transportation equation, which leads
to the possibility of using the numerical simulation on semiconductor industry.

In this part, we are going to illustrate how GSS realize the whole drift diffusion
model. First we are going to introduce the detail of drift diffusion equation and its
parameters. Because numerical solutions needs to discrete the model on certain
meshes, we are going to describe the meshing structure in GSS. After have meshes,
it is important to control the equations’ discretion on the meshes. After we finish
the discretization, partial differential equations is turned to be ordinary differential
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equations. In the end it is how to deal with large scale non linear equation set. It
is the scope of numerical method, which we only give simple illustration.

From user’s point of view, semiconductor device numerical simulation is the pro-
cess of constructing device structure, using appropriate physics models and cor-
responding mathematical abstraction, then by using numerical method software
with specific process parameters, eg. geometry dimensions, electrical parameters,
to calculate and obtain the characteristics of the device.

After finishing the drift diffusion model, we are going to do case study. Step by
step discuss the GSS model construction and how to select different parameters
in different cases and how to analyze the result with GSS.
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Since Gummel’s work, the drift-diffusion model has been widely used in the semi-
conductor device simulation. It is now the defacto industry standard of this field.

The original DD model can be achieved by following approximation from hydro-
dynamic model:

• Light speed is much faster than carrier speed.

• All the collision is elastic.

• Bandgap does not change during collision.

• Carrier temperature equals to lattice temperature and keeps equilibrium.

• The gradient of driving force should keep small.

• Carrier degenerate can be neglected.

Some improvements have been applied to DD model for extend its capability.
These "patches" of course make things complex, but they can deal with real
problems.

This chapter contains the DD model and its variations used by GSS code for
describing semiconductor device behavior as well as physical based parameters
such as mobility, recombination rate and son on.

7.1 Level 1 Drift-Diffusion Equation
Level 1 Drift-Diffusion (DDML1) is the fundamental solver of GSS code for lattice
temperature keeps constant though out the solve procedure.

The primary function of DDML1 is to solve the following set of partial differential
equations, namely Poisson’s equation, along with the hole and electron continuity
equations:

Poisson’s
Equation ∇ · ε∇ψ = −q

(
p − n + N+

D − N−A
)

(7.1)

where, ψ is the electrostatic potential, which specified the vacuum level through-
out GSS code. This setting makes the description of metal-oxide-semiconductor
contact and heterojunction easier. n and p are the electron and hole concentra-
tion, N+

D and N−A are the ionized impurity concentrations. q is the magnitude of
the charge of an electron.

The relationship of conduct band Ec, valence band Ev and vacuum level ψ is:

Ec = −qψ − χ −∆Ec (7.2)
Ev = Ec − Eg + ∆Ev (7.3)

Here, χ is the electron affinity. Eg is the bandgap of semiconductor. ∆Ec and ∆Ev

are the bandgap shift caused by heavy doping or inner strain force.
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Further more, the relationship of vacuum level ψ and intrinsic Fermi potential
ψintrinsic is:

ψ = ψintrinsic −
χ

q
−

Eg

2q
−

kbT
2q

ln
(

Nc

Nv

)
(7.4)

The reference 0 eV of energy is set to intrinsic Fermi level of equilibrium state in
the GSS code.

The continuity equations for electrons and holes are defined as follows:
Continuity

Equation

∂n
∂t

=
1
q
∇ · Jn − (U −G)

∂p
∂t

= −
1
q
∇ · Jp − (U −G)

(7.5)

where Jn and Jn are the electron and hole current densities, U and G are the
recombination and generation rates for both electrons and holes.

The current densities Jn and Jn are expressed in terms of the level 1 drift-diffusion
Drift-Diffusion

Equation
model here. Jn = qµnnEn + qDn∇n

Jp = qµp pEp − qDp∇p
(7.6)

where µn and µp are the electron and hole mobilities. Dn =
kbT

q
µn and Dp =

kbT
q
µp

are the electron and hole diffusivities, according to Einstein relationship.

En and Ep are the effective driving electrical field to electrons and holes, which
Effective

Electrical Field
related with local band diagram. The band structure of heterojunction has been
taken into account here [9].

En =
1
q
∇Ec −

kbT
q
∇

(
ln(Nc) − ln(T3/2)

)
(7.7)

Ep =
1
q
∇Ev +

kbT
q
∇

(
ln(Nv) − ln(T3/2)

)
(7.8)

The lattice temperature keeps uninform throughout DDML1, the above temper-
ature gradient item takes no effect in fact.

By substituting drift-diffusion model into the current density expressions, and
combining with Poisson’s equation, the following basic equations for DDML1 are
obtained:

∂n
∂t

= ∇ ·
(
µnnEn + µn

kbT
q
∇n

)
− (U −G)

∂p
∂t

= −∇ ·
(
µp pEp − µp

kbT
q
∇p

)
− (U −G)

∇ · ε∇ψ = −q(p − n + N+
D − N−A)

(7.9)

DDML1 is suitable for PN diode, BJT transistor and long gate MOSFET simula-
tion. It is robust, and runs pretty fast for real work. The detailed discretization
scheme can be found at "GSS First Level DDM Solver", on page 113.

7.2 Level 2 Drift-Diffusion Equation
The Level 2 DD model considers the influence of lattice temperature by solving
the extra thermal equation simultaneously with the electrical equations. Also, the
formula of drift-diffusion equation should be modified according to [10].
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The electron diffusion current in DDML1 can be written as:

Jn,di f f =
kbT

q
µnq∇n = kbTµn∇n (7.10)

But for DDML2, it has the form of
Temperature

Gradient
Modification

Jn,di f f = µnkb(T∇n + n∇T ) (7.11)

The hole diffusion current should be modified in the same manner.

Jp,di f f = −µpkb(T∇p + p∇T ) (7.12)

The following heat flow equation is used:
Heat Flow
Equation ρcp

∂T
∂t

= ∇ · κ∇T + J ·E + (Eg + 3kbT ) · (U −G) (7.13)

where ρ is the mass density of semiconductor material. cp is the heat capacity. κ
is the thermal conductivity of the material. J · E is the joule heating of current.
(Eg +3kbT ) ·(U−G) is lattice heating due to carrier recombination and generation.

From above discussion, the governing equations for DDML2 are as follows:

∂n
∂t

= ∇ ·
(
µnnEn + µn

kbT
q
∇n + µn

kb∇T
q

n
)
− (U −G)

∂p
∂t

= −∇ ·
(
µp pEp − µp

kbT
q
∇p − µp

kb∇T
q

p
)
− (U −G)

∇ · ε∇ψ = −q
(
p − n + N+

D − N−A
)

ρcp
∂T
∂t

= ∇ · κ∇T + J ·E + (Eg + 3kbT ) · (U −G)

(7.14)

This model can be used as power transistor simulation as well as breakdown simu-
lation. Unfortunately, nearly all the physical parameters are related with temper-
ature. They should be considered during self consistent simulation, which greatly
slows down the speed. The DDML2 solver runs 50-70% slower than DDML1.
However, it seems no convergence degradation happens in most of the case. The
discretization scheme can be found at "GSS Second Level DDM Solver", on page
117.

7.3 Level 3 Energy Balance Equation
Since version 0.45, the Energy Balance Model [11] is introduced into GSS code
for simulating short channel MOSFET. This is a simplification of full hydrody-
namic (HD) model1 [12]. The current density expressions from the drift-diffusion
model are modified to include additional coupling to the carrier temperature.
Also, reduced carrier energy conservation equations, which derived from second
order moment of Boltzmann Transport Equation, are solved consistently with
drift-diffusion model. The simplification from HD to EB makes sophisticated
Scharfetter-Gummel discretization still can be used in the numerical solution,
which ensures the stability.

The current density Jn and Jp are then expressed as:
Current

Equation for
EBM

Jn = qµnnEn + kbµn (n∇Tn + Tn∇n) (7.15)
Jp = qµp pEp − kbµp (p∇Tp + Tp∇p) (7.16)

1 GSS-0.37 implemented full HD model, but it runs very slow. More over, HD is unstable for
dual carrier simulation due to machine round-off error.
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where, Tn and Tp are electron and hole temperature, respectively. The differ-
ence between above equations and carrier density equations in DDML2 is lattice
temperature replaced by carrier temperature.

In addition, the energy balance model includes the following electron and hole
Energy Balance

Equations
energy balance equations:

∂ (nωn)
∂t

+ ∇ · Sn = En · Jn + Hn (7.17)

∂ (pωp)
∂t

+ ∇ · Sp = Ep · Jp + Hp (7.18)

where, ωn and ωp are electron and hole energy. For HD model, the carrier energy

includes thermal and kinetic terms ωc =
3
2

kbTc +
1
2

m∗v2
c , but only thermal energy

for EB model ωc =
3
2

kbTc. Here c stands for n or p. ω0 =
3
2

kbT is the carrier
equilibrium energy, for carrier temperature equals to lattice temperature.

Sn and Sp are the flux of energy:

Sn = −κn∇Tn − (ωn + kbTn)
Jn

q

Sp = −κp∇Tp − (ωp + kbTp)
Jp

q

(7.19)

The heat conductivity parameter for carriers can be expressed as:

κc = (
2
5

+ γ)
kb

2

q
Tcµcc (7.20)

where c stands for n and p, respectively. The constant parameter γ equals −0.7
in the GSS software.

The Hn and Hp are the rate of net loss of carrier kinetic energy:

Hn = (RAug −G) ·
(
Eg +

3kbTp

2

)
−

3kbTn

2
(RS HR + RDir −G)

−
n (ωn − ω0)

τn
(7.21)

Hp = (RAug −G) ·
(
Eg +

3kbTn

2

)
−

3kbTp

2
(RS HR + RDir −G)

−
p (ωp − ω0)

τp
(7.22)

where τn and τp are energy relaxation times for electrons and holes, respec-
tively. The RAug, RS HR and RDir are different recombination mechanisms referred
in "Carrier Recombination", on page 75.

At last, the lattice heat flow equation should be rewritten as:
Lattice Heat
Equation for

EBM
ρcp

∂T
∂t

= ∇ · κ∇T + H (7.23)

where

H = RS HR ·

(
Eg +

3kbTp

2
+

3kbTn

2

)
+

n (ωn − ω0)
τn

+
p (ωp − ω0)

τp
(7.24)

The carrier energy is mainly contributed by joule heating term Ec ·Jc, and heating
(cooling) due to carrier generation (recombination) term. The carriers exchange
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energy with lattice by collision, which described by energy relaxation term τωc .
This model is suitable for sub-micron MOS (channel length 1 ∼ 0.1 µm) and
advanced BJT simulation. However, the computation burden of EB method is
much higher than DD. And the convergence of EB solver is difficult to achieve,
which requires more strict initial value and more powerful inner linear solver. The
discretization scheme can be found at "GSS Third Level EBM Solver", on page
119.

From above discussion, all the governing equations of DD/EB method is elliptical
or parabolic. From mathematic point of view, does not like hyperbolic system2,
the solution of elliptical or parabolic system is always smooth. The required
numerical technique is simple and mature for these systems. As a result, the DD
and EB method is preferred against full hydrodynamic method.

7.4 Quantum Modified Drift-Diffusion Equation
Today’s microelectronic devices are so small that quantum mechanical effects are
important. The classical drift-diffusion and hydrodynamical equations, can not
face the challenge of nanometer device. Many quantum models are developed
in recent years. The full quantum models, like Schrödinger-Poisson method and
similar models, often lead to numerical complexity.

The density-gradient (DG) theory [13] [14], which is less detailed than full quan-
tum models, dealing only in coarse-grained information and not providing explicit
connections to more fundamental physics [15]. However, it is able to predict
both the terminal characteristics and the density distribution with comparable
result with Schrödinger-Poisson method for the device down to 10 nm [16]. The
DG method is formulated in terms of partial differential equations and therefore
tractable with the numerical methods commonly used for classical device simula-
tion, while other quantum models involving complex eigenvalue problems.

The governing equations of DG-DDM[17][18] are listed as below:
DG-DDM

Governing
Equations



∇ · ε∇ψ = −q
(
p − n + N+

D − N−A
)
− ρs

∂n
∂t

=
1
q
∇ · Jn − (U −G)

∂p
∂t

=
1
−q
∇ · Jp − (U −G)

Eqc − Ec = −
~2γn

12m∗n

∇2

(
EFn − Eqc

kbT

)
+

1
2

(
∇

EFn − Eqc

kbT

)2
Eqv − Ev =

~2γp

12m∗p

∇2

(
Eqv − EF p

kbT

)
+

1
2

(
∇

Eqv − EF p

kbT

)2

(7.25)

where, γn and γp are the fitting parameters to make the result of DG-DDM con-
sistence with Poisson-Schrödinger equation. Eqc is the quantum conduction band.
Eqv is the quantum valence band. The quantum potential of electron and hole are
defined as:

Λn =
Eqc − Ec

q

Λp =
Eqv − Ev

q

(7.26)

The current equation of DG-DDM keeps the same as Equation (7.6). However,
Current

Equation
Modification

2 One have to face discontinuous problem, i.e. shock wave.
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the driving force of carrier should be modified as:

En =
1
q
∇Ec −

kbT
q
∇

(
ln(Nc) − ln(T3/2)

)
+ ∇Λn (7.27)

Ep =
1
q
∇Ev +

kbT
q
∇

(
ln(Nv) − ln(T3/2)

)
+ ∇Λp (7.28)

Here gives another form of quantum potential equation which is useful in the nu-
Express

Quantum
Potential with
√

n and √p

merical discretization. When Boltzmann statistics holds, the density of electrons
and holes can be described as follows:

n = n0 exp
(

EFn − Eqc

kbT

)
(7.29)

p = p0 exp
(

Eqv − EF p

kbT

)
(7.30)

In the above equations, n0 and p0 are constants. Setting them to arbitrary value,
i.e. 1, will not affect final result. By substitution Equation (7.29) into Equation
(7.25), the following equation can be obtained.

Λn = −
~2γn

12qm∗n

[
∇2 ln n +

1
2

(∇ ln n)2
]

(7.31)

One can note that

1
2

[
∇2 ln n +

1
2

(∇ ln n)2
]
= ∇2 ln

√
n +

(
∇ ln
√

n
)2

= ∇ ·
(
∇
√

n
√

n

)
+

(
∇
√

n
√

n

)2
= −

1
n
∇
√

n · ∇
√

n +
∇2
√

n
√

n
+

1
n

(
∇
√

n
)2

=
∇2
√

n
√

n

(7.32)

As a result, the quantum potential of electrons can be rewritten as:

Λn = −
~2γn

6qm∗n

∇2
√

n
√

n
(7.33)

Similar expressions exist for the quantum potential of holes

Λp =
~2γp

6qm∗p

∇2 √p
√

p
(7.34)

The discretization scheme of DG-DDM equations is listed in "??", on page ??.

7.5 Bandgap Parameters
The bandgap parameters, including bandgap Eg, effective density of states in the
conduction band Nc and valence band Nv, and intrinsic carrier concentration nie,
are the most important and fundamental physical parameters for semiconductor
material [7].

Effective density of states in the conduction and valence band are defined as
Effective Density

of States
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follows:

Nc ≡ 2
(m∗nkbT

2π~2

)3/2
(7.35)

Nv ≡ 2
(m∗pkbT

2π~2

)3/2
(7.36)

The temperature dependencies of effective density of states is fairly simple:

Nc (T ) = Nc (300 K)
( T
300 K

)1.5
(7.37)

Nv (T ) = Nv (300 K)
( T
300 K

)1.5
(7.38)

The bandgap in GSS is expressed as follows:
Bandgap

Eg(T ) = Eg(0) −
α · T2

T + β

= Eg(300) + α

[
3002

300 + β
−

T2

T + β

] (7.39)

When bandgap narrowing effects due to heavy doping takes place [19], the band
Bandgap

Narrowing due
to Heavy Doping

edge shifts:

∆Eg =
Ebgn

2kbT

ln Ntotal

Nre f
+

√(
ln

Ntotal

Nre f

)2
+ 0.5

 (7.40)

For silicon, α = 4.73 × 10−4eV/K, β = 6.36 × 102K, Ebgn = 9 × 10−3eV, Nre f =
1.0 × 1017cm−3.

The intrinsic concentration should be modified:

nie =
√

NcNv exp
(
−

Eg

2kbT

)
· exp(∆Eg) (7.41)

Since the carrier current Equation (7.7) and Equation (7.8) involves the energy
level of conduction band Nc and valence band Nv, the bandgap shift should be
attributed to them. The bandgap narrowing is attributed half to the conduction
band and another half to the valence band as default:

E′c = Ec −
1
2
∆Eg (7.42)

E′v = Ev +
1
2
∆Eg (7.43)

7.6 Carrier Recombination
Three recombination mechanisms are considered in GSS at present, including
Shockley-Read-Hall, Auger, and direct (or radiative) recombination. The total
recombination is considered as the sum of all:

U = Un = Up = USRH + Udir + UAuger (7.44)

where USRH, Udir and UAuger are SRH recombination, direct recombination and
Auger recombination, respectively.

Shockley-Read-Hall (SRH) recombination rate is determined by the following for-
SRH

Recombination
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mula:

USRH =
pn − n2

ie

τp[n + nie exp(
ETRAP

kTL
)] + τn[p + nie exp(

−ETRAP
kTL

)]
(7.45)

where τn and τp are carrier life time, which dependent on impurity concentration
[20].

τn =
TAUN0

1 + Ntotal/NSRHN
(7.46)

τp =
TAUP0

1 + Ntotal/NSRHP
(7.47)

The parameter ETRAP = Et − Ei, where Et is the energy level for the recombi-
nation centers and Ei is the intrinsic Fermi Energy.

The Auger recombination is a three-carrier recombination process, involving either
Auger

Recombination
two electrons and one hole or two holes and one electron. This mechanism becomes
important when carrier concentration is large.

UAuger = AUGN(pn2 − nn2
ie) + AUGP(np2 − pn2

ie) (7.48)

Where AUGN and AUGP are Auger coefficient for electrons and holes. The
value of Auger recombination UAuger can be negative some times, which refers to
Auger generation.

The direct recombination model expresses the recombination rate as a function of
Direct

Recombination
the carrier concentrations n and p, and the effective intrinsic density nie:

Udir = DIRECT(np − n2
ie) (7.49)

The default value are listed below:

Unit Silicon GaAs Ge

ETRAP eV 0 0 0

DIRECT cm3s−1 1.1e-14 7.2e-10 6.41e-14

AUGN cm6s−1 1.1e-30 1e-30 1e-30

AUGP cm6s−1 0.3e-30 1e-29 1e-30

TAUN0 s 1e-7 5e-9 1e-7

TAUP0 s 1e-7 3e-6 1e-7

NSRHN cm−3 5e16 5e17 5e16

NSRHP cm−3 5e16 5e17 5e16

7.7 Mobility Models
Carrier mobility is one of the most important parameters in the carrier transport
model. The DD model itself, developed at early 1980s, is still being used today
due to advanced mobility model enlarged its ability to sub-micron device.

Mobility modeling is normally divided into: low field behavior, high field behavior
and mobility in the (MOS) inversion layer.

The low electric field behavior has carriers almost in equilibrium with the lattice.
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The low-field mobility is commonly denoted by the symbol µn0, µp0. The value of
this mobility is dependent upon phonon and impurity scattering. Both of which
act to decrease the low field mobility. Since scattering mechanism is depended on
lattice temperature, the low-field mobility is also a function of lattice temperature.

The high electric field behavior shows that the carrier mobility declines with elec-
tric field because the carriers that gain energy can take part in a wider range of
scattering processes. The mean drift velocity no longer increases linearly with
increasing electric field, but rises more slowly. Eventually, the velocity doesnąŕt
increase any more with increasing field but saturates at a constant velocity. This
constant velocity is commonly denoted by the symbol vsat. Impurity scattering is
relatively insignificant for energetic carriers, and so vsat is primarily a function of
the lattice temperature.

Modeling carrier mobilities in inversion layers introduces additional complications.
Carriers in inversion layers are subject to surface scattering, extreme carrier-carrier
scattering, velocity overshoot and quantum mechanical size quantization effects.
These effects must be accounted for in order to perform accurate simulation of
MOS devices. The transverse electric field is often used as a parameter that
indicates the strength of inversion layer phenomena.

It can be seen that some physical mechanisms such as velocity overshoot and
quantum effect which can’t be described by DD method at all, can be taken into
account by comprehensive mobility model. The comprehensive mobility model
externs the application range of DD method. However, when the EB method
(which accounts for velocity overshoot) and QDD method (including quantum
effect) are used, more calibrations are needed to existing mobility models.

7.7.1 Analytic Mobility Model

In the GSS code, Analytic Mobility model [3] [21] is the default low field mobility
model for all the material. It is an concentration and temperature dependent
empirical mobility model expressed as:

µ0 = µmin +
µmax

( T
300

)α
− µmin

1 +
( T
300

)β(Ntotal

Nre f

)γ (7.50)

where Ntotal = NA + ND is the total impurity concentration.

Other parameters for Si GaAs and Ge are listed below:

Unit Silicon: N Silicon: P GaAs: N GaAs: P Ge

µmin cm2 · (V · s)−1 55.24 49.70 0.0 0.0 Si

µmax cm2 · (V · s)−1 1429.23 479.37 8500.0 400.0 Si

α − -2.3 -2.2 -1.0 -2.1 Si

β − -3.8 -3.7 0.0 0.0 Si

γ − 0.73 0.70 0.436 0.395 Si

Nre f cm−3 1.072e17 1.606e17 1.69e17 2.75e17 Si

In the actual implement, the Analytic mobility model is modified for taking high
field effects (carrier velocity saturation effects) into account. For silicon material,
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Caughey-Thomas expression [3] is used for this modification:

µn =
µ0,n1 +

(
µ0,nE//

Vsat

)21/2
(7.51)

µp =
µ0,p

1 +
(
µ0,pE//

Vsat

) (7.52)

where E// is the electric field parallel to current flow. Vsat is the saturation veloc-
ities for electrons or holes. They are computed by default from the expression:

Vsat(T ) =
2.4 × 107

1 + 0.8 · exp
( T
600

) (7.53)

For GaAs material, another expression is used [22]:

un =
µ0,n +

Vsat

E//

(
E//

E0,N

)4
1 +

(
E//

E0,N

)4 (7.54)

up =
µ0,p +

Vsat

E//

(
E//

E0,P

)4
1 +

(
E//

E0,P

)4 (7.55)

where Vsat(T ) = 11.3×106−1.2×104T is the carrier saturation velocities for GaAs.
E0,N = 4.0 × 103 V/cm and E0,P = 1.0 × 106 V/cm are the reference electrical field
for electrons and holes, respectively. The negative differential property of carrier
mobility is described by this mode. When electric field increases in this model,
the carrier drift velocity (µE//) reaches a peak and then begins to decrease at high
fields due to the transferred electron effect.

When using this model for GaAs MESFET device simulation, the negative differ-
ential property may cause the drain output characteristics (current vs. voltage)
exhibit an unrealistic oscillation behavior. Another model to describe high field
effects developed by Yeager [23] can be used.

µ =
Vsat

E//
tanh

(
µ0E//

Vsat

)
(7.56)

It can be loaded by Hypertang keyword in PMIS statement.

Due to the widely usage of Si material, there are many mobility models existing
for silicon. The following paragraphs described some more (complex) mobility
modes for silicon which had been implemented into GSS. However, for other semi-
conductor materials in the GSS’s material database, only one mobility model in
the same formula as Analytic is provided at present.

7.7.2 Philips Mobility Model
Another low field mobility model implemented into GSS is the Philips Unified Mo-
bility model [4][5]. This model takes into account the distinct acceptor and donor
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scattering, carrier-carrier scattering and carrier screening, which is recommended
for bipolar devices simulation.

The electron mobility is described by the following expressions:

µ
−1
0,n = µ

−1
Lattice,n + µ

−1
D+A+p (7.57)

where µ0,n is the total low field electron mobilities, µLattice,n is the electron mobilities
due to lattice scattering, µD+A+p is the electron and hole mobilities due to donor
(D), acceptor (A), screening (P) and carrier-carrier scattering.

µLattice,n = µmax

( T
300

)−2.285
(7.58)

µD+A+p = µ1,n

(
Nsc,n

Nsc,e f f ,n

) (
Nre f

Nsc,n

)α
+ µ2,n

(
n + p

Nsc,e f f ,n

)
(7.59)

The parameters µ1,n and µ2,n are given as:

µ1,n =
µ2

max

µmax − µmin

( T
300

)3α−1.5
(7.60)

µ2,n =
µmax · µmin

µmax − µmin

(300
T

)1.5
(7.61)

where Nsc,n and Nsc,e f f ,n is the impurity-carrier scattering concentration and effect
impurity-carrier scattering concentration given by:

Nsc,n = N∗D + N∗A + p

Nsc,e f f ,n = N∗D + N∗AG (Pn) +
p

F (Pn)
(7.62)

where N∗D and N∗A take ultra-high doping effects into account and are defined by:

N∗D = ND

1 +
1

CD +
(

ND,re f

ND

)2


N∗A = NA

1 +
1

CA +
(

NA,re f

NA

)2


(7.63)

The screening factor functions G (Pn) and F (Pn) take the repulsive potential for
acceptors and the finite mass of scattering holes into account.

G (Pn) = 1−
0.892330.41372 + Pn

(
m0

me

T
300

)0.282270.19778
+

0.005978Pn

(
me

m0

T
300

)0.721691.80618
(7.64)

F (Pn) =
0.7643P0.6478

n + 2.2999 + 6.5502
me

mh

P0.6478
n + 2.3670 − 0.8552

me

mh

(7.65)
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The Pn parameter that takes screening effects into account is given by:

Pn =


fcw

3.97 × 1013N−2/3sc,n

+
fBH

1.36 × 1020

n + p

(
me

m0

)

−1 ( T

300

)2
(7.66)

Similar expressions hold for holes. The default parameters for Philips model are
listed as below:

Unit Silicon: N-TYPE Silicon: P-TYPE

µmin cm2 · (V · s)−1 55.2 44.90

µmax cm2 · (V · s)−1 1417.0 470.5

α − 0.68 0.719

Nre f cm−3 9.68e16 2.23e17

CD - 0.21 0.21

CA - 0.5 0.5

ND,re f cm−3 4.0e20 4.0e20

NA,re f cm−3 7.2e20 7.2e20

me m0 1.0 -

mh m0 - 1.258

fcw - 2.459 2.459

fBH - 3.828 3.828

In the actual code, Philips model is corrected by Caughey-Thomas expression for
taking high field velocity saturation effects into account. This model can be loaded
by Philips keyword in the PMIS statements.

7.7.3 Lombardi Surface Mobility Model
Along insulator-semiconductor interfaces, the carrier mobilities can be substan-
tially lower than in the bulk of the semiconductor due to surface scattering. If
no surface degradation is considered, the drain-source current may exceed about
30% for MOS simulation.

GSS uses Lombardi Surface Mobility model [24] for accounting surface degrada-
tion:

µ
−1
s = µ

−1
ac + µ

−1
sr (7.67)

where µac is mobility degraded by surface acoustical phonon scattering. µsr is
mobility degraded by surface roughness scattering.

µac,n =
3.61 × 107

E⊥
+

1.70 × 104N0.0233
total( T

300

)
3√E⊥

(7.68)

µac,n =
1.51 × 107

E⊥
+

4.18 × 103N0.0119
total( T

300

)0.9
3√E⊥

(7.69)
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µsr,n =
3.58 × 1018

Eγn
⊥

(7.70)

µsr,p =
4.10 × 1015

Eγp
⊥

(7.71)

where

γn= 2.58+
6.85 × 10−21(n + p)

N0.0767
total

(7.72)

γp= 2.18+
7.82 × 10−21(n + p)

N0.123
total

(7.73)

where E⊥ is the components of electric field perpendicular to the current direction
which stands for the distance to the insulator-semiconductor interface.

The Lombardi model is not used alone. Instead, it is the composition of other
comprehensive mobility models such as Lucent model in next paragraph.

7.7.4 Lucent High Field Mobility Model
The Lucent Mobility model [25] is an all-inclusive model which suitable for MOS
simulation. This model incorporates Philips Unified Mobility model and the Lom-
bardi Surface Mobility model, as well as accounting for high field effects. For low
longitudinal field, the carrier mobility is given by Matthiessen’s rule:

µ0 =
[

1
µb

+
1
µac

+
1
µsr

]−1
(7.74)

where µb is bulk mobility comes from (slightly modified) Philips model, µac and
µsr keep the same as Lombardi model.

Finally, for accounting high field effects, the total mobility is modified using the
expressions as Caughey-Thomas model:

µn =
2µ0,n

1 +
1 +

(
2µ0,pE//

Vsat

)21/2
(7.75)

µp =
µ0,p

1 +
(
µ0,pE//

Vsat

) (7.76)

Lucent is an accurate model recommended for MOS devices. The only shortcoming
is its heavy computational burden. This model can be loaded by Lucent keyword
in the PMIS statements.

7.7.5 Hewlett-Packard High Field Mobility Model
It is reported that Hewlett-Packard mobility model [26] achieves the same accu-
racy as Lucent model with relatively small computational burden in the MOS
simulation.
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This model also takes into account dependence on electric fields both parallel and
perpendicular to the direction of current flow.

µn =
µ⊥,n√√√√√√√√√√√√

1 +

(
µ⊥,nE//

Vc,n

)2
µ⊥,nE//

Vc,n
+ γn

+
µ⊥,nE//

Vs,n

µp =
µ⊥,p√√√√√√√√√√√√

1 +

(
µ⊥,pE//

Vc,p

)2
µ⊥,pE//

Vc,p
+ γp

+
µ⊥,pE//

Vs,p

(7.77)

where µ⊥,n and µ⊥,p can be expressed as below:

µ⊥,n =


µ0,n if Ntotal > Nre f

mun0

1 +
E⊥

Ere f ,n

µ⊥,p =


µ0,p if Ntotal > Nre f

mup0

1 +
E⊥

Ere f ,p

(7.78)

The default value for Nre f is 5×1017 cm−3. If the above conditions are not satisfied,
then µ⊥,n = µ0,n and µ⊥,p = µ0,p, where µ0,n and µ0,p are the low field mobility values
calculated by Analytic model.

The default value of Hewlett-Packard mobility model are:

Unit Silicon: N-TYPE Silicon: P-TYPE

mun0 cm2 · (V · s)−1 774.0 -

mup0 cm2 · (V · s)−1 - 250

Vc,n cm · s−1 4.9e6 -

Vc,p cm · s−1 - 2.928e6

Vs,n cm · s−1 1.036e7 -

Vs,p cm · s−1 - 1.2e7

γn - 8.8 -

γp - - 1.6

Nre f cm−3 5e17 5e17

Ere f ,n V · cm−1 5.5e5 -

Ere f ,p V · cm−1 - 2.78e5

Hewlett-Packard mobility model can be loaded by HP keyword in the PMIS state-
ment.
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7.7.6 Mobility Model used for EB
We should notice here, all the above mobility models are developed under the
framework of DD method. Since DD is an approximate model for semiconductor,
the difference between DD model and real device is corrected by mobility models!
These mobility model contains some physical model that DD does not consider.
For example, the high field correction has already contains the effect of hot carriers.
The surface mobility for MOSFET not only considers the mobility degrade due
to surface roughness, but also contains the effect caused by carrier concentration
decrease due to quantum well in inverse layer. These corrections extended the
application range of DD model, also make the mobility model rather complex.

When the physical model is more accurate, the carrier mobility model can be
less complicated. Thus, the mobility models suitable for DD model may NOT
be suitable for energy balance model. There are some mobility models developed
special for energy balance model [11][27]. However, they have not be implemented
into GSS yet.

7.8 Impact Ionization
The generation rate of electron-hole pairs due to the carrier impact ionization (II)
is generally modeled as [7]:

GII = αn
| Jn |

q
+ αp

| Jp |

q
(7.79)

where αn and αp are electron and hole ionization coefficients, related with electrical
field, material and temperature.

Selberherr gives an empirical formula [10], which is the default model used by
Selberherr

Model
GSS:

αn,p = α∞n,p(T ) exp

−ECrit
n,p

En,p

 (7.80)

where En,p is the magnitude of driving fields. When EdotJ model is used, En,p can
be given by:

En =
E · Jn

|Jn|
, Ep =

E · Jp∣∣∣Jp

∣∣∣ (7.81)

and for GradQf model:

En =
∣∣∣∇φFn

∣∣∣ , Ep =
∣∣∣∇φFp

∣∣∣ (7.82)

where ECrit
n,p =

Eg

qλn,p
, for which λn,p are the optical-phonon mean free paths for

electrons and holes given by:

λn(T ) = λn,0 · tanh
(

Eop

2kbT

)
λp(T ) = λp,0 · tanh

(
Eop

2kbT

) (7.83)

in the above expressions, Eop is the optical-phonon energy. λn,0 and λp,0 are the
phonon mean free paths for electrons and holes at 300 K.
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The temperature dependent factors α∞n and α∞p are expressed as:

α∞n = αn,0 + αn,1 · T + αn,2 · T2

α∞p = αp,0 + αp,1 · T + αp,2 · T2

The default parameters used for Selberherr model:

Unit Silicon GaAs Ge

λn,0 cm 1.04542 × 10−6 3.52724 × 10−6 6.88825 × 10−7

λp,0 cm 6.32079 × 10−7 3.67649 × 10−6 8.39505 × 10−7

Eop eV 6.3 × 10−2 3.5 × 10−2 3.7 × 10−2

αn,0 cm−1 7.030 × 105 2.994 × 105 1.55 × 107

αn,1 cm−1 ·K−1 0.0 0.0 0.0

αn,2 cm−1 ·K−2 0.0 0.0 0.0

αp,0 cm−1 1.528 × 106 2.215 × 105 1.00 × 107

αp,1 cm−1 ·K−1 0.0 0.0 0.0

αp,2 cm−1 ·K−2 0.0 0.0 0.0

GSS has another Valdinoci model for silicon device which has been reported to
Valdinoci Model produce correct temperature dependence of breakdown voltage of junction diodes

as high as 400K [28]. It can be loaded by specification Valdinoci in the PMIS
statements.

Silicon: N-TYPE Silicon: P-TYPE Unit

A0N 4.3383 A0P 2.376 V

A1N −2.42 × 10−12 A1P 1.033 × 10−2 V ·K−A2X

A2N 4.1233 A2P 1.0 -

B0N 0.235 B0P 0.17714 V

B1N 0.0 B1P −2.178 × 10−3 K−1

C0N 1.6831 × 104 C0P 0.0 V · cm−1

C1N 4.3796 C1P 9.47 × 10−3 V · cm−1 ·K−C2X

C2N 1.0 C2P 2.4924 -

C3N 0.13005 C3P 0.0 V · cm−1 ·K−2

D0N 1.233735 × 106 D0P 1.4043 × 106 V · cm−1

D1N 1.2039 × 103 D1P 2.9744 × 103 V · cm−1 ·K−1

D2N 0.56703 D2P 1.4829 V · cm−1 ·K−2

The electron impact ionization rate for Valdinoci model reads:

αn =
E//

an (T ) + bn (T ) exp
(

dn (T )
E// + cn (T )

) (7.84)
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where
an (T ) = A0N + A1N · TA2N

bn (T ) = B0N · exp (B1N · T )

cn(T ) = C0N + C1N · TC2N + C3N · T2

dn(T ) = D0N + D1N · T + D2N · T2

Similar expressions hold for holes. The parameters for Valdinoci model are listed
in the table.

The carrier generation by band-band tunneling GBB is also considered by GSS,
Generation by

Tunneling
which can be expressed as: [2]

GBB = 3.5 × 1021 ·
E2√
Eg
· exp

(
−22.5 × 106 ·

E3/2
g

E

)
(7.85)

where E is the magnitude of electrical field.

7.9 Fermi-Dirac Statistics
In general, the electron and hole concentrations in semiconductors are defined by
Fermi-Dirac distributions and density of states:

n = Nc F1/2 (ηn) (7.86)
p = Nv F1/2 (ηp) (7.87)

The ηn and ηp are defined as follows:

ηn =
EFn − Ec

kbT
= F-1

1/2

(
n

Nc

)
(7.88)

ηp =
Ev − EFp

kbT
= F-1

1/2

(
p

Nv

)
(7.89)

where EFn and EFp are the electron and hole Fermi energies. The relation ship of
Fermi energy and Fermi potential is EFn = −qφn, EFp = −qφp.

F-1
1/2

is inverse Fermi integral of order one-half. Joyce and Dixon gives its ap-
Evaluate Inverse

Fermi Integral
proximation analytic expression in the year of 1977 [29], which can be given by:

F−11/2 (x) =


log (x) + ax + bx2 + cx3 + dx4 x < 8.463(3√π4

x
)3/4
−
π2

6

1/2 otherwise
(7.90)

where
a = 0.35355339059327379
b = 0.0049500897298752622

c = 1.4838577128872821 × 10−4

d = 4.4256301190009895 × 10−6

In the GSS code, the ηn and ηp are derived from carrier concentration by Joyce-
Dixon expression.

For convenience, we introduce floowing two parameters as referred by [30]:

γn =
F1/2 (ηn)
exp (ηn)

(7.91)

γp =
F1/2 (ηp)
exp (ηp)

(7.92)
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The carrier concentration for Fermi statistics and Boltzmann statistics can be
described uniformly by:

n = Ncγn exp (ηn) (7.93)
p = Nvγp exp (ηp) (7.94)

where γn = γp = 1 for Boltzmann statistics, and less than 1.0 for Fermi statistics.

Consider the drift-diffusion current Equation (7.6), when the carrier satisfies Fermi
DD Equation

with Fermi
Statistics

statistics and forces zero net current in equilibrium state, one can get the modified
current equation, for which the Einstein relationship:

Dn =
kbT

q
µn (7.95)

Dp =
kbT

q
µp (7.96)

should be replaced by:

Dn =
kbT

q
µn F1/2 (ηn) /F-1/2 (ηn) (7.97)

Dp =
kbT

q
µp F1/2 (ηp) /F-1/2 (ηp) (7.98)

where F-1/2 is the Fermi integral of order minus one-half. The corresponding
current equation for electrons is

Jn = µn (qnEn + kbTλn∇n) (7.99)

where

λn =
F1/2 (ηn)
F-1/2 (ηn)

(7.100)

The Fermi integral has an useful property:

d
dη

Fν (η) = Fν−1 (η) (7.101)

From the above property, one can derive two useful derivatives:

∂

∂n
ηn (n) =

λn

n
(7.102)

∂

∂n
γn (n) =

γn

n
(1 − λn) (7.103)

With the two derivatives, Equation (7.99) can be rewritten into the following
equivalent formula:

Jn = µn (qnEn + kbT∇n − nkbT∇ (ln γn)) (7.104)

The last term is the modification to Einstein relationship, which can be com-
binated into potential term. As a result, the current Equation (7.6) keeps un-
changed, but the effective driving force should be modified as:

En =
1
q
∇Ec −

kbT
q
∇

(
ln(Nc) − ln(T3/2)

)
−

kbT
q
∇ (ln γn) (7.105)

The same formula exists for holes:

Ep =
1
q
∇Ev +

kbT
q
∇

(
ln(Nv) − ln(T3/2)

)
+

kbT
q
∇ (ln γp) (7.106)
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As a conclusion, when Fermi statistics is considered, the formula of DD method
keeps unchanged, only an extra potential term should be considered. However,
Fermi statistics also effect the implement of Ohmic boundary condition, please
refer to "??", on page ??.
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By using numerical technique to solve partial differential equations (PDEs), first
we need to divide the computational region into finite sub domains. So that we
can discretize the PDEs in these sub domain to form an approximate algebraic
system. And then, we can obtain the approximate solution of original PDEs by
solving the algebraic system numerically. Here meshing is the technique to divide
the computational region.

8.1 Semiconductor Physical Model and
Numerical Model

Since GSS is a two dimension numerical simulation software, for real simulation
work, we have to simplify the device to get the two dimension model. From
physical entity to numerical model, we need to abstract device’s main factors and
neglect the unimportant factors. This process needs knowledge and experience,
normally requires expertise. For users, numerical model for most of the devices
exist already and can be used as a template.

Figure (8.1) shows the SOI-CMOS transistors in large scale integration circuit [31].
Physical Device

and Numerical
Model

If we want to use two dimension semiconductor software to do the simulation, one
of the transistors should be picked out, and be simplified to two dimensional planar
structure as shown in Figure (8.2).

Figure 8.1: Real SOI-CMOS transis-
tor

Figure 8.2: SOI-CMOS transistor
calculation model

8.2 Semiconductor Simulation’s Request on
Mesh

After obtain the numerical device model, we have to mesh it. The method for
meshing decides the following possible numerical processes. And the mesh quality
decides the convergence speed and even whether converge or not1.

There are two kinds of mesh: structured mesh and unstructured mesh. Structured
Structured Mesh

1 See appendix: How to conquer convergence problems.
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mesh has (or can be projected to) regular mesh lines in cartesian coordinate
system, shown as Figure (8.3). the advantage of structured mesh is that it is
easy to be generated and one can use simple yet efficient finite difference method
on it. The disadvantage is that the mesh is not flexible. It is difficult to fit
the device with complicate boundary shape with structured mesh. And mesh
densification often leads to surplus mesh nodes.

Unstructured mesh allows mesh point to be arranged disorderly. In two dimension
Unstructured

Mesh
condition, it is obtained from triangle or quadrangle discretion, shown as Figure
(8.4). Unstructured mesh can conserve the complicate boundary shape. Another
advantage is the mesh can be locally refined at some critical region, and keeps
coarse for unimportant area. However unstructured mesh is more difficult to
realize than structured mesh. Further more, only finite volume or finite element
method can be used, for which the memory requirement is higher than finite
difference method.

Figure 8.3: Structured mesh

Figure 8.4: Unstructured mesh

In early days, two dimension semiconductor numerical simulation software only
From Structured

Mesh to
Unstructured

Mesh

support simple diode, bipolar transistor devices and etc. The geometry of all
those devices can be considered as simple rectangle. Accordingly, structured mesh
can discretize the whole region efficiently. However as the semiconductor process
develops, MOS structure turns to be the main stream device. Unfortunately it is
not so easy to build a MOS structure. It is composed of silicon, silicon dioxide
insulation and electrode regions. Further more, the gate silicon dioxide boundary
has bird peak like shape due to process concerns. In this case, structured mesh
can not describe the complicate device structure.

Besides, the accuracy of semiconductor numerical simulation is strongly dependent
on mesh construction. Obviously more dense mesh should bring to more accuracy.
However the calculation loading will increase square proportional to mesh nodes
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number2. In order to solve this conflict, we can use dense mesh in the area we
concerned and coarse mesh in the area we don’t care much. Generally in the region
where potential and carriers have high gradients, we need dense mesh (See"??",
on page ??), whereas in smooth region, we can use coarse mesh. So that we could
balance both accuracy and computational efficiency.

Accordingly unstructured mesh is generally used in semiconductor numerical sim-
ulation. Several famous software, eg. PISCES, MINIMOS and etc. all adoped
triangle based unstructured mesh. GSS also supports triangle mesh.

There are some different methods to generate unstructured mesh, The most pop-
Delaunay Mesh ular method is called Delaunay method [32] [33]. This method is very adaptive to

complicate boundary, and can generate high quality triangles. However, Delaunay
generated mesh is isotropic. Some physical processes, such as thermal conduction
and diffusion, do not dependent on direction, are situate to be discretized on this
kind of unstructured mesh.

In semiconductor device, since the current has certain fixed direction, if the mesh
Quadtree Mesh node direction follows the current direction, we can decrease the split error [34]

which cased by direction mismatch. By using unstructured mesh generate by
Quadtree technology, the above requirement can be satisfied [35]. This technol-
ogy turns to be the main stream in semiconductor numerical simulation. The
disadvantage of Quadtree technology is its low adaptiveness to complicate bound-
ary conditions. It often generates triangle with bad quality at curved boundary.

Figure (8.5) and Figure (8.6) show the mesh of NMOS transistor generated by
SGFramework and MEDICI, which based on Delaunay Quadtree method, respec-
tively.

GSS uses Triangle [1] as its mesh generator, which is based on Delaunay method.
Triangle Mesh

Generator: the
Tradeoff

Accordingly the mesh in GSS is basically isotropic and has good boundary fitting.
However, with assistant mesh lines, we can give certain order to the mesh nodes
and obtain mesh topology between Delaunay and Quadtree meshes.

Figure 8.5: Isotropic unstructured mesh, generated by SGFramework

8.3 GSS Mesh Data Structure
Unstructured mesh needs smart data structure and algorithm to manage. In
whole GSS development, many efforts are spent on developing efficient and stable
2 Please read appendix: GSS’s memory and CPU request.
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Figure 8.6: Quadtree unstructured mesh, generated by MEDICI

internal mesh functions.

After mesh generation, we have the computational region be divided into triangles.
Voronoi Diagram In order to implement the finite volume method (FVM), GSS needs to build

Voronoi diagram from triangle mesh since FVM uses Voronoi diagram as its control
volume. The Voronoi diagram is the regions surrounded by each edge’s vertical
half separation line. Accordingly, the triangles and its Voronoi diagram overlap
each other, shown in Figure (8.7).

Figure 8.7: Voronoi unit and triangle
dual mesh

Figure 8.8: Voronoi unit contains ob-
tuse triangle

Since the vertex of Voronoi diagram is the circumcircle’s center of certain triangle,
Special Process

of Obtuse
Triangle

here is a special case for obtuse triangle. For acute or vertical triangle, the center of
its circumcircle is inside it (or locate at its edge), which has no problem. However
for obtuse triangle the circumcircle’s center is outside, shown as triangle A, B
and C in Figure (8.8). For this instance, the distance between the center to
corresponding edge of the obtuse triangle should be negative, shown as d3 in
Figure (8.10), to keep the consistent of Voronoi diagram to triangle mesh.

The mesh quality is another thing we should concern. A triangle with obtuse
Mesh Quality angle or very shape acute angle, will lead to large numerical error in PDE discre-

tion, which should be avoid. Fortunately, the mesh generator use by GSS is very
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outstanding, which can guarantee that there is no obtuse triangle on the bound-
ary and the minimum angle is larger than 20◦. Whereas quadtree method often
generates a lot of obtuse triangles near the boundary, which affects the accuracy
of numerical simulation.

Figure 8.9: Triangle unit

Figure 8.10: Obtuse triangle unit

The topology of unstructured mesh is mainly composed of nodes, triangles and
Mesh Data

Structure
Voronoi cells. The node is a geometry point plus the boundary mark. Here is the
brief of node data:

1 struct Node // node
2 {
3 double x,y; // x and y coordinate
4 int bc_index; // the index to boundary of the node
5 int zone_index; // the zone index;
6 };

Triangle data includes vertex index to node, length of three edges, the degree of
three angles, circumcircle’s center position, the distance from circumcircle’s center
to each edge3, triangle area and boundary condition and so on.

1 struct Tri // triangle
2 {
3 int node[3]; // three nodes, local index
4 double edge_len[3]; // the length of 3 edges: a,b and c
5 double angle[3]; // the degree of 3 angles: A, B and C
6 double xc,yc; // the location of circle center
7 double d[3]; // the distance from circumcircle center to 3 edges
8 double s[3]; // the area of region separated by da, db and dc
9 int bc[3]; // the boundary condition index of 3 edge

10 double area; // the area of triangle
11 int zone_index; // the zone index
12 };

The data structure for Voronoi cell is the most complex, since neighbor information
should be stored here. A Voronoi cell should know how many neighbors it has,
and the geometrical information about each of its neighbors.

1 struct VoronoiCell // VoronoiCell
2 {
3 double x,y; // location of cell center
4 int nb_num; // the number of neighbors
5 int *nb_array; // the index of neighbor nodes
6 int *inb_array; // inverse index of neighbor nodes
7 double *elen; // the array of the length of cell’e boundary edge
8 double *ilen; // the array of the distance to it’s neighbor nodes
9 double *angle; // the angle of it’s neighbor to horizontal line

10 double area; // the area of cell
11 int *celledge; // the cell’s boundary edge index array
12 int bc_index; // the index to boundary of the node
13 };

3 One should care with obtuse triangle. The distance from circumcircle’s center to the longest
edge should be negative.
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After building the data structure for triangles and Voronoi cells, we are ready to
discrete PDEs on the mesh.

Although the order of node for an unstructured mesh is not important from topo-
Mesh Node
Reordering

logical view, which means by exchanging the order of two different nodes will not
affect the topology structure. However reasonable order can decrease the band
width of matrix generated by later PDE discretization. The decrease of the band
width of matrix can reduce the non zero filling for LU factorization. For Krylov
space iteration method, it helps to improve the efficiency of pre- conditioner, so
as to accelerate the solving.

GSS use breadth first searching algorithm to reorder the mesh nodes. After re-
ordering, the band width of matrix decreases sharply. Figure (8.11) and Figure
(8.12) show the before and after reordering band width of the matrix generated
by problem "??", on page ??.

The basic step of breadth first searching algorithm is shown below:

1. Calculate mesh’s topology structure,
initialize the list, clean node visit mark

2. Assign left bottom node’s order to be 0,
insert it into list end, set it to be visited

3. When (list is not empty)
{

Eject the list’s top node as current node, order increase 1
Look for current node’s neighbor node
If(neighbor node is not visited before)
{

Mark this node as visited, insert it to list end
}

}

4. Update all node’s index

Figure 8.11: Initial matrix band
width

Figure 8.12: Reordered matrix band
width

8.4 Finite Volume Discretion of Derivative
Operator
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8.4.1 Gradient of Scaler Field
Assume there is scaler Φ defined at the field. We are going to discretize ∇Φ on
mesh shown as Figure (8.13). Generally, numerical method needs only gradient
along the edge of triangle, which is defined at the center of the edge:

∂Φ
∂r

∣∣∣∣∣∣∣
m,n

=
Φm − Φn

|rm − rn|
(8.1)

Figure 8.13: Directional gradients’ FVM discretion

Figure 8.14: FVM discretion of ∇Φ

However, for certain instance, we need to calculate ∇Φ at the node n. For example,
when Φ represents the electrostatic potential, and we needs to get electric field
E = −∇Φ at the node n. Here ∇Φ can be given by Green-Gauss formulae or least
squares method.
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Start from Green-Gauss formulae, the average value of ∇Φ over a control volume
Construct

Gradient by
Green-Gauss

Formulae

can be illustrated as:

Φx =
1

∆V

∫
∆V

ΦxdV =
1

∆V

∮
Φdy (8.2)

Φy =
1

∆V

∫
∆V

ΦydV =
1

∆V

∮
Φdx (8.3)

where ∆V represents the area of the two-dimensional control volume, shown as
Figure (8.14). The contour integral along the face of control volume can be dis-
cretized to

Φx =
1

∆V

N∑
m=1

Φn + Φm

2
∆ynm (8.4)

Φy =
−1
∆V

N∑
m=1

Φn + Φm

2
∆xnm (8.5)

where m is n’s neighbor node, ∆xnm and ∆ynm denote the increments of x and y
along the control volume face. If Φ is linear function at the region, Green-Gauss
formulae can get exact result.

The least-squares gradient construction is obtained by minimize the sum of the
Construct

Gradient by
Least-squares

Construction

squares of the differences between neighboring values m = 1,N and values extrap-
olated from the node n under consideration to the neighboring locations:

N∑
m=1

ω2
nmE2

nm (8.6)

Error function E can be given by

E2
nm = (−dΦnm + Φxdxnm + Φydynm)2 (8.7)

where dΦnm = Φm − Φn, dxnm = xm − xn, dynm = ym − yn, ω is a weighting factor.
When the partial derivative is 0, Equation (8.6) reaches its minimum:

∂
N∑

m=1
ω2

nmE2
nm

∂Φx
= 0 (8.8)

and

∂
N∑

m=1
ω2

nmE2
nm

∂Φy
= 0 (8.9)

through straight-forward algebra, the two formulae above can be written as:

anΦx + bnΦy = dn (8.10)
bnΦx + cnΦy = en (8.11)
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where an, bn and cn can be expressed as:

an =
N∑

m=1

ω2
nmdx2

nm (8.12)

bn =
N∑

m=1

ω2
nmdxnmdynm (8.13)

cn =
N∑

m=1

ω2
nmdy2

nm (8.14)

dn =
N∑

m=1

ω2
nmdΦnmdxnm (8.15)

en =
N∑

m=1

ω2
nmdΦnmdynm (8.16)

Since parameter an, bn and cn are only related to mesh topology structure, they can
be pre-computed for saving CPU time when this gradient needs to be evaluated
many times.

Note that the determinant of this system is given by:

DET = ac − b2 (8.17)

For ωnm = 1, the determinant corresponds to a difference in quantities of the order
O(dx4), which may lead to ill-conditioned systems. However if inverse distance
weighting ω2

nm = 1/(dx2
nm + dy2

nm) is used, then DET scales to O(1), condition
number is much better.

After having ∇Φ, the gradients along triangle edge can be redefined as below,
however it is rarely used.

∂Φ
∂r

∣∣∣∣∣∣∣
m,n

=
rm − rn

|rm − rn|
∇Φ (8.18)

8.4.2 Vector field’s divergence
Assume discretize the divergence of vector field A on the cell shown as Figure
(8.15). The average integral value of ∇ ·A over control volume can be expressed
by Gauss theory as:

1
∆V

∫
V
∇ ·AdV =

1
∆V

∫∫
©

∆S
A · dS (8.19)

Sum the contour integral and discretize it, we have

1
∆V

∫
V
∇ ·AdV =

1
∆V

∫∫
©

∆S
A · dS ≈

1
∆V

N∑
m=1

Am,n · em,ndS (8.20)

where dS is the outer face of the control volume, em,n is the face normal vector, Am,n

is the value of A at the face of the control volume. Generally, Am,n , (Am +An)/2,
different problem needs different numerical scheme to construct Am,n. If we need
to calculate fluid dynamic problem, we need some complicated reconstruction i.e.
Roe scheme. For semiconductor problem, normally we adopt Scharfetter-Gummel
discretion scheme.
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Figure 8.15: Divergence’s FVM discretion

Especially, if vector A can be illustrated as scaler field’s gradients A = ∇Φ, then
the discretion of Laplas operator ∇2 = ∇ · ∇ can be written as

1
∆V

∫
V
∇ · ∇ΦdV ≈

1
∆V

N∑
m=1

∇Φ

∣∣∣∣∣∣∣
m,n

· em,ndS ≈
1

∆V

N∑
m=1

∂Φ
∂r

∣∣∣∣∣∣∣
m,n

dS (8.21)

8.4.3 Vector field’s curvature

Assume vector A is defined in the region, only consider two dimension problem,
for electromagnetic example, magnetic vector H with two dimensional TM mode,
where Hz is 0.

Figure 8.16: Curling’s FVM discretion
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Over control volume ∆V in Figure (8.16), the curling of A can be discretized as

1
∆V

∫
V
∇ ×A

∣∣∣∣∣∣∣
n

· ezdV =
1

∆V

∮
∆L

A · dL ≈
1

∆V

N∑
m=1

Am,n · e⊥,m,n∆Lm (8.22)

where dL represents the vector along the face of control volume. e⊥,m,n is the tan-
gential unit vector along the face. ∆Lm is the length of mth face. Am,n is the value
of A at the face. Simultaneously we should use some complicate reconstruction
technique.
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Chapter 9 Numeric Method of
Drift-Diffusion Model

9.1 Variable Scaling
For the numerical simulation of semiconductor, variable quantity can be differed
much. For example, electrostatic potential is normally several V, but carrier
density is normally at 1 × 1018 cm−3 level. Without preprocessing, we can not
get accuracy solution when Poisson’s equation combined with Carrier continuous
equation. Since the computer double type floating number has only 16 digit num-
ber, when the potential and carrier density difference is more than 16 magnitudes,
the variation of potential will disappear in the huge number of carrier variation.
In this case we need to scale the variables.

Although variables non-unitization is the normal method, GSS tries a new method.
Semiconductor simulation involves many parameters. Most of them have units,
by using non-unitization is not straightforward, and very easy to make mistakes.
So I leave the unit and use a set of basic unit to replace the original unit.

There are many physical units. However we only need 5 independent units ac-
tually. International Unit system (SI) selects mechanical length, mass, time, and
electrical current strength and thermal temperature as its basic units. GSS select
length, time, potential, charge quantity and temperature as basic unit. Other
units are leaded units.

Inside GSS, physical variables still take units such as cm and s. However, the unit
has its own definition, shown below:

Unit Unit define value Annotation

Basic Unit cm max−1/3(Doping) Length unit can be re-defined by user

Basic Unit s 1012 Using pico second as the basic unit

Basic Unit V 1.0 Same as SI definition

Basic Unit C 1.0/e Electron charge as 1

Basic Unit K 1.0/300 Use 300K as basic temperature unit

Leaded Unit m 100 cm

Leaded Unit µm 1 × 10−4 cm

Leaded Unit J C ·V

Leaded Unit kg J/m2 · s2 J = C ·V = kg ·m2/s2

Leaded Unit eV 1.0 ·V Electron charge as 1

Leaded Unit A C/s

Leaded Unit mA 1 × 10−3 A

In this case, semiconductor control equation and parameters does not change their
physical formula, eg. carrier density can still be written as n = 1.0 × 1018 cm−3,
but by selecting max(Doping) = 1.0 × 1018 cm−3, we can let the value of n be 1.0.
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In GSS material parameter database, a lot of parameters are given with natural
unit, which leads to efficient compilation.

9.2 FVM Discretion of Poisson’s Equation
Before solving DDM equations, here introduce finite volume solution of Poisson’s
equation on two dimensional mesh first. The following equation is going to be
solved:

∇ · ε∇ψ = −ρ (9.1)

Boundary condition includes the first, the second, the third type and interface
between different materials.

Figure 9.1: Poisson equation internal points discretion

Suppose P0 is the internal point of a Voronoi cell G0, shown as Figure (9.1),
Discretion of
Internal Point

P1 ∼ P6 and P0 are the neighbors, m1 ∼ m6 is triangle P0PiPi+1 (Suppose P7 = P1,
same below)’s surrounding circle center. Integrating over G0, we get"

G0

∇ · ε∇ψ dV = −
"
G0

ρ dV (9.2)

by using Green’s formula, above Equation (9.2) can be rewritten as∫
∂G0

ε∇ψ · dS = −
"
G0

ρ dV (9.3)

where ∂G0 is G0’s boundary. We notice:∫
∂G0

ε∇ψ · dS =
6∑

i=1

∫
mimi+1

ε
∂ψ

∂n
dS ≈

6∑
i=1

mimi+1

P0Pi+1

εi+1 [ψ (Pi+1) − ψ (P0)] (9.4)

Among them, n is ∂G0’s normal vector, εi+1 is the value of ε along the face of
control volume mimi+1, for non-uniform material we can use linear interpolation
to get it:

εi+1 =
ε(P0) + ε(Pi+1)

2
(9.5)
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In most of the situations, we can consider charge density ρ does not charge a lot
in control volume, accordingly the right hand side integral of Formulae (9.3) can
be written as

−

"
G0

ρ dV ≈ −ρV (G0) (9.6)

where V (G0) is the control volume G0’s area.

By above discussing, the finite volume discrete scheme at internal point P0 can
be written as:

6∑
i=1

mimi+1

P0Pi+1

εi+1 [ψ (Pi+1) − ψ (P0)] = −ρV (G0) (9.7)

Then we need to consider finite volume discrete about boundary point, shown as
Discretion of

Boundary Point
Figure (9.2):

Figure 9.2: Poisson equation boundary points discretion

Suppose P0 is the boundary point, now control volume is P0m1m2m3m4m5P0. If
P0 follows first type boundary condition, for example ψ = ψ0, then we can simply
force

ψ (P0) = ψ0 (9.8)

If P0 follows second or third boundary condition type, for example

∂ψ

∂n
+ kψ = r (9.9)

we need go back to Green’s formulae. Similar as Equation (9.3), the discretion
equation of boundary point P0 can be written as∫

∂G0

ε
∂ψ

∂n
dS =

4∑
i=1

∫
mimi+1

εi+1
∂ψ

∂n
dS +

∫
P0m1

ε
∂ψ

∂n
dS +

∫
P0m5

ε
∂ψ

∂n
dS (9.10)

The first item of right hand side of Equation (9.10) can be discreted as the same
mentioned by Equation (9.4). For the last two items, we need to start from
boundary condition Equation (9.9). We obtain the integral only contains ψ by
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removing the normal vector derivatives. Suppose k and r are constant, ψ on
P0m1 and P0m5’s linear distribution can be integrated with trapezoid formulae
calculation, then we have

ψ(m1) =
ψ(P0) + ψ(P1)

2

ψ(m5) =
ψ(P0) + ψ(P4)

2

(9.11)

Integrate through P0m1 can be written as∫
P0m1

ε
∂ψ

∂n
dS =

∫
P0m1

ε(r − kψ) dS

= P0m1ε(P0)
[
r − k

ψ (P0) + ψ (m1)
2

]
= P0m1ε(P0)

[
r − k

3ψ (P0) + ψ (P1)
4

] (9.12)

similarly∫
P0m5

ε
∂ψ

∂n
dS = P0m5ε(P0)

[
r − k

3ψ (P0) + ψ (P4)
4

]
(9.13)

Put Equation (9.12) and Equation (9.13) in Equation (9.10), we get the finite
volume discrete equation at the boundary points.

Especially, if the boundary is Neumann type:

∂ψ

∂n
= 0 (9.14)

Obviously, boundary does not need to be processed. During programming, this
kind of boundary point can be processed the same as internal point.

If we meet the interface of two different materials as show in Figure (9.3), where
Discretion of

Interface Point
P0, P1, P4 are the points located on the interface, P0’s control volume lies on both
materials. s1, s2 are the center points of P0P1 and P0P4. Interface s1s2 separate

Figure 9.3: Boundary points’ Poisson equation discretion
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control volume G as GI and GII parts. By integrating at both GI and GII , we get∫
s1m1m2m3 s2

ε
∂ψ

∂n
dS +

∫
s2s1

εI
∂ψ

∂n
dS = −

"
GI

ρdV (9.15)∫
s2m4m5m6 s1

ε
∂ψ

∂n
dS +

∫
s1s2

εII
∂ψ

∂n
dS = −

"
GII

ρdV (9.16)

From above circle integrals, the interface s1s2 is integrated twice, with dielectric
constant ε selected with region GI and GII ’s value, respectively. Sum up two
formulae above, and use the relationship at interface:

εI
∂ψ

∂n
− εII

∂ψ

∂n
= σ (9.17)

we have∫
∂GI+∂GII

ε
∂ψ

∂n
dS+σs1s2 = −

"
GI+GII

ρdV (9.18)

The following things are simple, Formulae (9.4) can be used here to do the dis-
cretion.

Obviously, the discretion of Poisson’s equation on unstructured mesh is very con-
venient. Boundary condition and material interface can be processed in flexible
way. As soon as meshing supporting function be well designed, discretion process
is easier than finite difference method1.

The finite volume discrete at last form a closed linear algebra equation set Ax = b
where A is a band sparse coefficient matrix, x is the solution vector of ψ, right
hand side vector b is formed by source ρ and some boundary item. Regarding
numerical solution to linear equations, please refer to later chapters.

9.3 Numerical Scheme of 1D DDM Equations
In this section, we are going to introduce numerical discretion scheme of DDM
equations in one dimensional. This can be a good fundamental about the actual
numerical arithmetic used in GSS, since although it is one dimension condition,
most of the concepts can be put into high dimension in a straightforward way.

Suppose ψ, n, p as basic variables, semiconductor material is uniform, and temper-
Basic DDM
Governing

Equation in 1D

ature inside is uniform and unchanged, DDM equations in 1D can be described
as:

∂2ψ

∂x2
= −

q
ε

(ND − NA + p − n) (9.19)

∂n
∂t

=
1
q
∂Jn

∂x
− R (9.20)

∂p
∂t

=
−1
q
∂Jp

∂x
− R (9.21)

Jn = qµn

(
−n

∂ψ

∂x
+ VT

∂n
∂x

)
(9.22)

Jp = qµp

(
−p

∂ψ

∂x
− VT

∂p
∂x

)
(9.23)

where VT =
kbT

q
is the thermal electrical constant.

First we us N points to discrete calculation region into N − 1 parts, leading mesh
Mesh Discretion

in 1D
1 The boundary discretion is a complex and boring work in finite difference method, since it
not only dependent on physical boundary condition but also where is the boundary.
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distance to ∆x, as shown in Figure (9.4).

Figure 9.4: One dimension discrete mesh points

For simple illustration, here we only consider steady-state problem, which means
The Discreted

DD Equation at
Point i

time partial difference item is zero. At mesh point i, let Poisson’s equation dis-
cretized with three-point-center-difference, continuous equation can be descretized
by using current value at half point i − 1/2 and i + 1/2, yet we get:

ψi−1 − 2ψi + ψi+1

∆2x
= −

q
ε

(ND − NA + pi − ni) (9.24)

1
q

Jn,i+1/2 − Jn,i−1/2

∆x
− Ri = 0 (9.25)

−1
q

Jp,i+1/2 − Jp,i−1/2

∆x
− Ri = 0 (9.26)

where Ri = R(ni, pi) is the carrier recombination item only contains carrier density.
Since the 1D discretion of Poisson’s equation by three-point-center-difference is a
canonical method, we don’t want to explain it here. As a result, the key of DDM
numerical discretion is to get half point current at i + 1/2 and i − 1/2.

Based on Equation (9.22), electron current at half point i + 1/2 is given by:
Half Point

Current Jn,i+1/2 = qµi+1/2

(
−ni+1/2

ψi+1 − ψi

∆x
+ VT∇n

∣∣∣∣
i+1/2

)
(9.27)

A straightforward linear difference method can be written as:
Linear Formula

of Half Point
Current

ni+1/2 =
ni + ni+1

2
(9.28)

∇n
∣∣∣∣
i+1/2

=
ni+1 − ni

∆x
(9.29)

The pity is numerical experiment shows this simple discretion format has strong
confinement. It can only be stable used when drift current is much smaller than
diffusion current. In another word, this format can only be used for small mesh
distance, weak electric field and low carrier concentration condition.

In order to give stable solution at high drift current, we usually use Scharfetter-
Scharfetter-

Gummel
Formula of Half

Point Current

Gummel scheme to discretize semiconduct current equation. This scheme can be
naturally leaded from the equation of electron’s current in region [xi, xi+1]:

Jn = qµ
(
n (x) E + VT

dn
dx

)
(9.30)

where E = −
ψi+1 − ψi

∆x
is the electrical field intensity. Suppose in the region,

except carrier density, other quantity including electric intensity, carrier mobility
and current intensity keep unchanged, the previous formulae can be re-written to
electron density related ordinary differential equation:

dn
dx

+
E
VT

n = C0 (9.31)
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Attention, current Jn here is unknown, and sum into constant value C0. Solving
this ordinary differential equation symbolically, we have

n(x) =
VT

E
C0 + C1 exp

(
−

E
VT

x
)

(9.32)

where C0 and C1 are constant coefficient. Put electron density at point i and i+1
as boundary condition into Equation (9.32), we can solve C0 and C1 out. Then
we have electron density distribution at [xi, xi+1]:

n(x) = ni [1 − g(x)] + ni+1g(x) (9.33)

where

g(x) =
1 − exp

(
ψi+1 − ψi

VT

x − xi

∆x

)
1 − exp

(
ψi+1 − ψi

VT

) (9.34)

is the growth function.

After having the analytic carrier density distribution Equation (9.33), we can get
the carrier density n at half point i+1/2 as well as density gradients ∇n there. The
discretion of electron current at the half point can then be got by substitution n
and ∇n into Equation (9.27).

By using the same process, we can obtain discretion scheme for hole current.
However, some simpler method exists here.

Pay attention to hole current Equation (9.23), using the following formulae to
replace



Jn → Jp

n→ p

µn → µp

kb → −kb

then the equation will be the same as electron current Equation (9.22). Accord-
ingly, the discretion formula of hole current can be got by simple replacement to
the discretion formula of electron current.

For simple illustration, we introduce two assistant function, their function plot is
shown below Figure (9.5) and Figure (9.6):

aux1(x) =
x

sinh(x)
(9.35)

aux2(x) =
1

1 + ex (9.36)

Half point carrier density, carrier gradient and current can be expresses by this
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Figure 9.5: aux1(x) function Figure 9.6: aux2(x) function

two assistant function as:

n|mid = ni aux2
(
ψi − ψi+1

2VT

)
+ ni+1 aux2(

ψi+1 − ψi

2VT
) (9.37)

∇n
∣∣∣∣
mid

= aux1
(
ψi − ψi+1

2VT

)
ni+1 − ni

∆x
(9.38)

Jn|mid = qµn|mid

(
n|mid

ψi − ψi+1

∆x
+ VT∇n

∣∣∣∣
mid

)
(9.39)

p|mid = pi aux2
(
ψi+1 − ψi

2VT

)
+ pi+1 aux2

(
ψi − ψi+1

2VT

)
(9.40)

∇p
∣∣∣∣
mid

= aux1
(
ψi − ψi+1

2VT

)
pi+1 − pi

∆x
(9.41)

Jp|mid = qµp|mid

(
p|mid

ψi − ψi+1

∆x
− VT∇p

∣∣∣∣
mid

)
(9.42)

(9.43)

If we don’t need to obtain half point carrier density and other middle variables,
current can also be directly expressed by the following formulae:

Jn|mid =
qVTµn

∆x

[
ni+1 B

(
ψi+1 − ψi

VT

)
− ni B

(
ψi − ψi+1

VT

)]
(9.44)

Jp|mid =
qVTµp

∆x

[
pi B

(
ψi+1 − ψi

VT

)
− pi+1 B

(
ψi − ψi+1

VT

)]
(9.45)

where B (x) =
x

ex − 1
is the Bernouli function.

In the discretion above, we need half point mobility value. In general, weak field
Mobility at Half

Point
mobility can be expressed as

µ = µ(NA,ND, n, p,T ) (9.46)

We can compute mobility directly at half point, by interpolation NA and ND.
However, the interpolation usually cause large numerical error. Instead, we can
interpolation point’s mobility to half point, for example linear interpolation:

µ|mid =
µi + µi+1

2
(9.47)

Or more physical, consider mobility inverse’s relaxation time as a linear function,
leads to the following interpolation method:

µ
−1|mid =

1
2

(
1
µi

+
1
µi+1

)
(9.48)
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Two interpolation methods have little difference in real application in term of
result, accordingly we can choose simple calculation linear interpolation method.
After obtain half point weak field mobility, we use the electric field at the half point
to get the mobility correction of strong electric field. Then we insert current’s
discretion into Equation (9.25) and Equation (9.26), we finish the discretion of
DDM equations.

After the discretion, a large scale nonlinear algebraic equations have been brought
out. It is the nonlinear solver’s task to carry out the solution and will be discussed
later. User can find a 1D diode simulation code on our web site, which is a good
demonstration to this section.

9.4 Discussion about Convectional-Diffusion
System

Drift-diffusion model’s current equation is typical convection-diffusion equation.
This kind of equation has both convection items and diffusion items: at diffusion
conditions, convection can be dominating, which is like fluid, or diffusion can be
dominating, which is close the thermal conductance.

9.4.1 Numerical scheme for convectional problem
In teaching materials, normally we use first order linear wave transport equation

Model Equation
of Convectional

Problem

as convection problem’s model equation:

∂u
∂t

+ a
∂u
∂x

= 0 (9.49)

where a > 0 is wave’s speed.

Convection problem’s numerical simulation is always very complicated. For linear
First Order

Upwind Scheme
wave equation, the simplest scheme is the first order upwind scheme, which comes
from straightforward consideration: since wave comes from the upstream, the
difference format should use the upstream information.

un+1
i − un

i

∆t
+ a

un
i − un

i−1

∆x
= 0 (9.50)

When a
∆t
∆x
6 1, it is a stable scheme. However the 1st order upwind scheme’s

numerical dissipation is very serious. In real application, it could be more than
the physical dissipation, so that we could have completely wrong physical image.

Figure (9.7) shows the initial triangle wave which adopts a
∆t
∆x

= 0.5 calculation
result. Only 20 steps later, the peak value decreases almost half. Because the
numerical dissipation of the 1st order upwind scheme is too strong, its numerical
results are not accepted by the world.

Lax-Friedrichs is another 1st order scheme with even heavier numerical dissipation:
Lax-Friedrichs

Scheme
un+1

i − 1
2

(
un

i+1 + un
i−1

)
∆t

+ a
un

i+1 − un
i−1

∆x
= 0 (9.51)

All typical 2nd order formulae including 2nd order Lax-Wendroff scheme, 2nd
Second Order

Schemes
order upwind scheme and Bean-Warming scheme have the same problem: although

GeniEDA Corp. 107 GSS User’s Guide



9.4 Discussion about Convectional-Diffusion System Chapter9. Numeric Method of Drift-Diffusion Model

numerical dissipation decreases, one suffers from numerical dispersion, which turns
to have fake oscillation where the solution gradient is large.

Here is the 2nd order upwind scheme:

un+1
i − un

i

∆t
+ a

3un
i − 4un

i−1 + un
i−2

2∆x
= 0 (9.52)

Figure (9.8) shows the fake numerical oscillation at discontinuous region caused
by numerical dispersion of 2nd order upwind scheme.

Figure 9.7: Numerical dissipation of
1st order upwind scheme

Figure 9.8: Numerical oscillation of
2nd order upwind scheme

Numerical dissipation (also called numerical viscosity) is generally known in last
Numerical

Dissipation and
Dispersion

century 50’s. In late 60’s Hirt proposes inspiring stable criterion theory, which uses
the sign of even order local truncation item to judge difference scheme’s stability
[36]. A stable numerical scheme must have positive even order local truncation
item, and thus be dissipated, for example different type of upwind scheme; or
all the even order local truncation items are zero, and thus zero dissipated, eg.
leapfog scheme. A dissipation scheme will dissipate system energy, removing wave
peak and wave valley. However zero dissipation scheme will not consume system
energy itself. These two types of schemes have different application field. Dissi-
pation scheme is generally used in fluid dynamic simulation. Because fluid itself
has viscosity, if we control the additional numerical viscosity to certain extent,
the influence can be neglected. Zero dissipation scheme is more useful in elec-
tromagnetic field calculation. For example FDTD method uses leapfog scheme
[37], because Maxwell equations are linear and single wave speed (light speed c)
wave functions with no viscosity, numerical viscosity’s introduction is equivalent
as solving dissipative materials’ electromagnetic transport problem, which is not
tolerable in many conditions.

As computational hydrodynamics developing, the scheme accuracy turns to be
higher as numerical dissipation turns to be weaker. CFD expert Harten proposes
a paper in 1983 on ’high resolution’ slogan. Simultaneously he proposed famous
TVD scheme [38] [39]. But we find after numerical dissipation decreases, the nu-
merical dispersion problem comes out. Numerical dispersion normally will not
lead to calculation failure (it could lead to non-linear instability in certain prob-
lem), but it will affect physical wave speed. Because partial differential equation’s
accurate solution can be treated as the summation of series waves with different
wave number (reference to Fourier transformation), however numerical dispersion
changes these waves’ speed. When there is high gradients, the waves separate
each other, and the numerical oscillation cames out.

Then people realize a good hydrodynamic scheme needs suitable dissipation and
keeps dispersion as small as possible. The standard is that the numerical dissi-
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pation can depress the numerical dispersion’s side effect. Accordingly Harten’s
slogan is changed to ’high resolution, non oscillation’, and he proposed ENO
(essentially non-oscillatory) format [40] [41], so that to decrease or remove the
numerical dispersion’s parasitic oscillation and non-linear instability.

Numerical scheme with zero dissipation can not help to depress numerical dis-
persion leading oscillation. However in electromagnetic theory, wave speed is
constant light speed c, although leapfog format will lead to light speed variation,
the shift keeps the same in all the simulation region. Accordingly it will not lead
to oscillated numerical result. However, there are more proposals about even less
numerical dispersion scheme [42].

After discussing numerical dissipation and dispersion, we can back to convection
problem. Obviously we need a ’high resolution, non oscillation’ method. Here
’high resolution’ means at least 2nd order accuracy, and it should not have nu-
merical oscillation. We can find suitable solution in CFD world: TVD or ENO
format. Here SG format gives another way: center difference plus artificial vis-
cosity item (will discussed below).

Figure (9.9) is initial value with discontinuity at x = 20, while wave speed is
a = 1 moving toward right direction. Considering the wave shape when t = 30,
theocratical solution is non transformed wave moving, with discontinuity at x =
50. Figure (9.10) gives TVD scheme and 2nd order upwind scheme’s comparison.
We notice that TVD scheme dissipation is relatively small and without oscillation
phenomenon.

Figure 9.9: initial wave with disconti-
nuity

Figure 9.10: TVD scheme vs 2nd order
upwind scheme

9.4.2 Numerical scheme for diffusion problem
The model equation of diffusion problem is the 2nd order thermal transfer equa-

Model Equation
of Diffusion

Problem

tion.

∂u
∂t

= b
∂2u
∂x2

(9.53)

Since the physical quantity diffuses to every direction in diffusion problem, it
Center

Difference in
Space

Discretion

is natural to adopt center difference method. For diffusion problem, normally
we consider it is easy to solve, because its physics basement is dissipated. Using
center difference scheme to discretize 2nd order derivative item will have 2nd order
accuracy and enough numerical dissipation. Accordingly there is no difficulty on
numerical discretion.

Diffusion system’s trouble is that the time step for satisfying stable condition is
normally very small. We need to use implicit format for time discretion in most
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of the case. Consider the center difference scheme for model equation:

un+1
i − un

i

∆t
= b

un
i+1 − 2un

i + un
i−1

∆x2
(9.54)

Stability condition is b
∆t
∆x2

6
1
2
. When ∆x is relatively small, the limitation for

time step is very strict. So diffusion problem normally adopts implicit format, for
Implicit format in
Time Discretion

example, Crank-Nicolson format, which is 2nd order accurate in time.

un+1
i − un

i

∆t
=

b
2

un
i+1 − 2un

i + un
i−1

∆x2
+

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2

 (9.55)

In convection-diffusion mixed problem, the limitation to diffusion item is normally
stricter than convection item. Semi-implicit format is sometimes be used in early
period, which means using implicit format for diffusion item and explicit format
for convection item. But after the improvement of calculation method, currently
it tends to adopt both implicit format.

9.4.3 Scharfetter-Gummel Scheme
We introduced famous Scharfetter-Gummel scheme in the previous section, brief
calls SG scheme. This is a generally used scheme in convection diffusion problems,
however not the only one. Because SG’s own characteristics, it is suitable in
semiconductor simulation and plasma discharge simulation. Here we are going to
give a more essential discussion.

We rewrite the current discretion formation as below:
Characteristic of

SG Scheme Jn|mid =
qVTµn

∆x

[
ni+1 B

(
ψi+1 − ψi

Vt

)
− ni B

(
ψi − ψi+1

Vt

)]
(9.56)

Noticing that

lim
x→0

B (x) = lim
x→0

x
ex − 1

= 1 (9.57)

lim
x→+∞

B (x) = lim
x→+∞

x
ex − 1

= 0 (9.58)

lim
x→−∞

B (x) = lim
x→−∞

x
ee − 1

∼ −x (9.59)

When ψi = ψi+1, electric field is 0, there is no drift movement, current is dominated
by diffusion. The corresponding SG scheme is

Jn|mid =
qVTµn

∆x
(ni+1 − ni) (9.60)

This is a three-point-center-difference discretion scheme (only one side), which is
suitable for discretion diffusion problem.

When ψi � ψi+1, diffusion can be neglected, the extreme condition SG scheme
becomes:

Jn|mid = qµEni+1 (9.61)

On the other hand, when ψi � ψi+1, there is

Jn|mid = qµEni (9.62)

Obviously, Formulae (9.61) and Formulae (9.62) represents current is composed
of electron drifting movement from node with low electrostatic potential to node
with high electrostatic potential. Here we show the SG format’s upwind character.
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In another point of view, weight function g(x) represents two nodes’ electron
density contribution, figure Figure (9.11) shows different ∆ψ/VT conditions’ nor-
malized g(x) function curve. We can find that when ∆ψ/VT is relatively large,
half point electron density is more weighted by upstream.

Figure 9.11: g(x)function

We can prove further, SG scheme can be written as center difference plus one
Essential

Property of SG
Scheme

artificial diffusion item. Assume a = qD, b = −
qE
kbT

, current equation can be

written as

j = −abn + a
dn
dx

(9.63)

now continuous equation is still
d j
dx

= R Making this equation discretion on uni-
form mesh, assume a, b and R are constant, we have(

1 −
b∆x
2

)
ni+1 − 2ni +

(
1 +

b∆x
2

)
ni−1 = a−1∆x2R (9.64)

After introducing both side boundary condition, the above three diagonal equation
set can be solved by chasing method:

ni = A + B

(
1 +

b∆x
2

)i

(
1 −

b∆x
2

)i −
∆xR
ab

i (9.65)

where A and B are boundary condition deciding constant. Obviously if Reynolds
number b∆x/2 > 1, when the footnote i changes from odd to even or vice versa,
ni’s value will vibrating. One of the solution methods is to introduce artificial
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diffusion item Da, now the current equation is discretized to

j1+1/2 =
(
−abn + a

dn
dx

+ Da
dn
dx

) ∣∣∣∣
i+1/2

= −ab
(ni + ni+1

2

)
+ a

(ni+1 − ni

∆x

)
+ Da

(ni+1 − ni

∆x

) (9.66)

The purpose of introducing artificial diffusion item is to let new Reynolds number

b∆x
2 (1 + Da/a)

(9.67)

keep less than 1. A suitable choice is

Da = a (αi+1/2 cothαi+1/2 − 1) (9.68)

where

αi+1/2 =
ψi+1 − ψi

2VT
(9.69)

now the discretion equation can be written as

B (2αi+1/2) ni+1 − [B (2αi−1/2) + B (−2αi+1/2)] ni +B (−2αi−1/2) ni−1 = a−1∆x2Ri

(9.70)

B (x) is still Bernouli function. This is SG discretion scheme.

The artificial diffusion introduced by SG scheme will not cause serious problem
Disadvantage of

Artificial
Diffusion

in one dimensional calculation, since diffusion direction and drift direction is al-
ways the same in 1D. But at high dimensional condition, since diffusion toward
all different directions, so besides drift direction, there is virtual diffusion effect,
called crosswind diffusion, also the more drifting the more artificial diffusion we
will introduce. In MOS simulation, when current goes through the channel, the
crosswind effect leads to artificial diffusion current vertical to channel, which may
induce relatively large numerical error.

9.4.4 Define your own format
Up till now, SG format is not mystery anymore. It can be treated as a self
consistent convection diffusion scheme with 2nd order accuracy. Maybe someone
will consider to make their own scheme to replace SG, i.e. to reduce artificial
diffusion.

For example Formulae (9.60) and Formulae (9.62) can also be used in DDM dis-
cretion. For the above formula, the diffusion item can have 2nd order when center
difference is used, convection item’s upwind discretion is only first order accurate.
In order to improve convection item’s discretion accuracy, someone goes to up-
wind basement – CFD society – for higher order upwind scheme. In theory, it is
all right. Many high accuracy schemes, eg. TVD and ENO can be found in CFD
world. The trouble is afterwards, which is going be discussed in detail later. After
DDM discretion, the PDEs of DDM lead to large scale nonlinear equations. One
has to build Jacobian matrix to form the Newton iteration. Things for SG scheme
is relatively easy, the Jacobian matrix can be calculated accurately. However for
those high order upwind scheme, since adopting complicate reconstruction and
limiter technique, there is almost no way to construct accurate Jacobian matrix
by human2. We can only use approximate matrix instead (CFD also suffered with
2 The automatically differentiation may be the hope.
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this problem). Using approximate matrix will lead to Newton iteration conver-
gence speed decrease to linear order, for certain disadvantage conditions, it could
lead to divergence. As a result, high accurate schemes are good for lab usage, for
example looking for new algorithm.

Since GSS as a general semiconductor software has high request on calculation
speed and convergence need, accordingly we adopt simple and efficient SG format3.

9.5 GSS First Level DDM Solver
This section will introduce numerical discretion method use in GSS for solving
first level DDM equations. Based on the discretion of 1D DDM and 2D Poisson’s
equation we had introduced, the 2D DDM discretion is almost there.

For convenience, introducing solve vector Q, flux vector F and source vector S
Compact Format

of DDM
Equations

here:

Q =


0
n

p

 ,F =


ε∇ψ

1
q
Jn

−
1
q
Jp


,S =


ρ

G − R

G − R


Write basic DDM Equation (7.9) as compact format:

∂Q
∂t

= ∇ · F + S (9.71)

Do integration over Voronoi cell i as we have done in Equation (9.2) discretion of
Poisson’s equation, and adopt Green theorem, we have∫

Ωi

∂Qi

∂t
dV =

∑
e

Fele +
∫

Ωi

SidV (9.72)

Where Ωi is the Voronoi cell belongs to i, Fe is flux at the face edge e of Voronoi
cell, le is the length of the face edge e.

The variable Q in the integral express at left hand side of Equation (9.72) can
Volume

Integration of
Solution Variable

be brought out by assuming electron and hole density is constant in the cell.
Although it is a rough approximation, that is the best so far. Now the integration
becomes:∫

Ωi

∂Qi

∂t
dV =

∂Qi

∂t
∆VΩi (9.73)

where, ∆VΩi is the area of Voronoi cell i.

We temporarily forget the generation of carrier here. The charge ρ and recom-
Volume

Integration of
Source Term

bination rate are considered to be constant inside voronoi cell. Then the source
item S integration can also be written as:∫

Ωi

SidV = Si∆VΩi (9.74)

The remaining difficulty is how to evaluation the flux function Fe at the face of
Evaluate Flux

Function
Voronoi cell.
3 TVD style AUSM+ scheme had been tried in GSS version 0.3x, which brings less numerical
dissipation than SG scheme. However, it is easy to divergence.
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Since discretion method of Poisson’s equation had been described before, we focus
on carrier continuity equation’s flux function, the discretion of electron current
density and hole current density in 2D.

In real code, flux at the face of Voronoi cell is obtained by scanning all the triangles
[43]. Since Voronoi diagram and triangles are overlapped each other shown in
Figure (8.7). Scanning all the triangles is equivalent as scanning all the Voronoi
cells. It is going to be discussed later that this method will lead to convenience
for calculating electric field and current compared to calculating them inside the
Voronoi cell.

Figure 9.12: Triangle unit

The following current density can be electron current density or hole current
density, shown in Figure (9.12). The node i, j, k is the vertex of triangle as well as
the center of Voronoi cell. Thus, the triangle can be divided into 3 parts belongs to
each Voronoi cell, which represented with different type of shade. Single triangle’s
flux contribution to Voronoi cell i, j, k is:

Fi = J jd j − Jkdk (9.75)
F j = Jkdk − Jidi (9.76)
Fk = Jidi − J jd j (9.77)

Where ŝk is edge k’s unit vector. dk is the flux cross section for side k. Jk = J · ŝk

is an average value of the projection of current density vector J onto triangle edge
k between nodes i, j. Ji, J j has similar meaning, they are obtained through S-G
discretion scheme.

To obtain current density Jk along triangle edge k, we need to assume electrical
field and current density changes slowly along the edge, so that we can treat them
as constant value. Then the current transport along triangle edge can be treated
as one dimensional problem.

Now Equation (9.39) – Equation (9.42) or Equation (9.44) and Equation (9.45) all
can be used to calculate the current density. Taking Equation (9.44) and Equation
(9.45) as an example, current Jk flows along edge k can be written as:

Jn
k =

qµnVT

Lk

[
n jB

(
ψ j − ψi

VT

)
− niB

(
−
ψ j − ψi

VT

)]
(9.78)

Jp
k =

qµpVT

Lk

[
piB

(
ψ j − ψi

VT

)
− p jB

(
−
ψ j − ψi

VT

)]
(9.79)
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where, Lk is the length of edge k, µn and µp are mobility at the center of edge k.

The previous formulae represents the flux’s conservation. Using Jkdk as an exam-
ple, it is the current which goes out of the Voronoi cell i and goes into the Voronoi
cell j. Accordingly the flux for the Voronoi i is negative, while for Voronoi j is
positive and absolute value are the same.

By scanning all the triangles with following this way and sum all of the flux along
triangle edges, we can go into desired flux function for every Voronoi cell.

9.6 Mobility Implementation in 2D
From the previous section we notice, current density expression at the face of 2D
Voronoi cell is similar as 1D condition. But the treatment of mobility µ for 2D
condition is more difficult from 1D. This is because electric field direction and
current direction are the same or opposite for 1D. However, electric vector and
current density vector can have an angle in 2D case. Because high field mobility
model and surface mobility model need the parallel and vertical electric field
component to the direction of current (see "Mobility Models", on page 76), we
have to be careful to deal with it.

How to calculate mobility value on triangle edge center is the difficulty in 2D
semiconductor simulation. GSS software calculates triangle vertex’s mobility and
then uses interpolation method Equation (9.47) to obtain mobility at triangle edge
center. Noticing µ = µ(NA,ND, n, p, E//, E⊥), since the impurity concentration and
carrier concentration for the node are known, the difficulty is how to solve E// and
E⊥.

Theoretically, calculating E// and E⊥ needs to have node’s E and carrier current
EJ Model density vector J, and then do the projection with the following formulae:

E// =
max(0,E · J)

|J |
(9.80)

E⊥ =
|E × J |
|J |

(9.81)

We can use many method to obtain E// and E⊥. If we solve inside the Voronoi cell,
Mobility

Evaluation in
Voronoi Cell

noticing Equation (5.41) and Equation (5.43), current density can be illustrated
with quasi-Fermi potential’s gradients:

Jn = −qµnn∇φn (9.82)
Jp = −qµp p∇φp (9.83)

Here, taking electron’s mobility as an example: we can use least square method
on the Voronoi diagram (please refer to "Finite Volume Discretion of Derivative
Operator", on page 93) to compute potential and electron quasi-Fermi potential’s
gradients. Then we have the electric field vector and current density vector in the
Voronoi cell as the Equation (9.80) and Equation (9.81) can be used to calculate
E// and E⊥ (µn in Jn of Equation (9.82) can be canceled during the calculation).
After having E// and E⊥, we can obtain node’s electron mobility.

This method’s shortcoming is Voronoi’s least square method involves too many
neighbor nodes. Normally a Voronoi cell have 5 ∼ 7 neighbor nodes, since the
mobility is the interpolation function between two neighbor Voronoi’s mobility.
So totally more than 10 neighbor nodes are involved. It is quite troublesome for
later Jacobian matrix calculation. And the matrix bandwidth is relatively large.

In order to decrease programmer’s work load, Laux suggests gradients’ calculation
Mobility

Evaluation in
TriangleGeniEDA Corp. 115 GSS User’s Guide
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inside triangle. From finite element analysis we known, when ψ at each triangle
vertex is known, ∇ψ can be treated as constant value inside triangle:

Ex = −ψx = −
(y2 − y3)ψ1 + (y3 − y1)ψ2 + (y1 − y2)ψ3

2∆
(9.84)

Ey = −ψy = −
(x3 − x2)ψ1 + (x1 − x3)ψ2 + (x2 − x1)ψ3

2∆
(9.85)

Where ψ1, ψ2 and ψ3 are the ψ at the vertex of triangle, ∆ is triangle area.

For calculating the current vector inside a triangle, we use weighted interpolation
method [43], shown as Figure (9.12). First, as discussed in the last section, we
consider there exists current vector J inside triangle. The current density along
the triangle edge which evaluated by S-G discretion scheme is the projection of J
on the triangle edge. Since only the current density along the triangle edges are
known, we have to construct J by Ji, J j and Jk. Because S-G discretion format is
non-linear, this current vector J is not easily obtained as electric field vector, and
might not have single solution. There are three different interpolation methods to
construct current vector J:

J jk =
1

sin2 i
[(J j + cos i · Jk) ŝ j + (Jk + cos i · J j) ŝk] (9.86)

Jki =
1

sin2 j
[(Jk + cos j · Ji) ŝk + (Ji + cos j · Jk) ŝi] (9.87)

Ji j =
1

sin2 k
[(Ji + cos k · J j) ŝi + (J j + cos k · Ji) ŝ j] (9.88)

Where, Ji, J j and Jk are current along triangle edge. J jk, Jki and Ji j are current
vector J constructed by different linear interpolation. Laux uses a weighted av-
erage method to obtain the final current vector J. For example in Figure (9.12),
current vector J is considered to be average value of J jk and Jki with different
weights in small triangle ∆io j related to edge k:

Jk =
di · Jki + d j · J jk

di + d j
(9.89)

Since Ex and Ey are known, Equation (9.80) and Equation (9.81) can be used to
calculate E// and E⊥ with Equation (9.89) through edge k, finally we can obtain
mobility along edge k. The mobility along other two edges can be composed with
the similar way. Please pay attention that during the S-G current calculation at
the triangle edge, we need the mobility information, and electrical field evaluation
needs S-G current. It seems that it is a coupled process. In fact, mobility only
affected by current direction, not amplitude. Accordingly we can assume any
mobility value during S-G current calculation, and normally select mobility value
which scales current density at the order of O(1) for improving the evaluation
accuracy of E · J and E × J. After finishing mobility evaluation, we can scale the
S-G current to its real value.

In this way, E// and E⊥ calculation only involves 3 points, the band width of
Jacobian matrix can be greatly reduced and simultaneously calculation accuracy
can still be ensured. The shortcoming of this method is that when current density
is very low, calculating E · J and E × J may brings large numerical error, which
may affects convergence (for equilibrium state, since current density is 0, E ·J and
E × J are meaning less).

When the accurate requirement is not so strict, there is another simple method
ESimple Model shown in Figure (9.13) The mobility for weighting current density from node 1 to

GeniEDA Corp. 116 GSS User’s Guide



Chapter9. Numeric Method of Drift-Diffusion Model 9.7 GSS Second Level DDM Solver

Figure 9.13: Solving E// and E⊥ by simple method

node 2 can use following parallel and vertical electric field expressions:

E// =
|ψ2 − ψ1 |

d12
(9.90)

E⊥ =
|ψ3 − ψp |

d3p
(9.91)

this method’s advantage is easy to program, calculation speed is fast, convergence
performance is better. However simulation result is heavily related to mesh in this
situation: when current flow is mainly along triangle edge, the result is relatively
accurate. If we can not secure the previous condition, we need to go back to
Equation (9.80) and Equation (9.81).

GSS DDML1E/DDML2E/EBML3E solvers are based on above discussion. Simul-
taneously support Laux’s method and the simplification method, which is suitable
for either accuracy first and speed first condition. In the later chapter, these two
methods are called EJ model and ESimple model. ESimple model is set as the
default model for mobility evaluation.

9.7 GSS Second Level DDM Solver
GSS Level 2 DDM solver considers thermal effect during device simulation. Beside
one crystal thermal transportation equation has been added to system, expression
of current density has many variations, shown in Equation (7.14). Here corre-
spondingly basic variables include ψ, n, p and crystal temperature T .

Rewrite the electron and hole current density as below, we consider the SG dis-
Current

Equation in
DDML2

cretion scheme:

Jn = µn(qE + kb∇T )n + µnkbT∇n (9.92)
Jp = µp(qE − kb∇T )p − µpkbT∇p (9.93)

Semiconductor thermal conduct are normally very fast, for example silicon’s ther-
Assumption

before SG
Discretion

mal conductivity is one third as copper’s. And because the semiconductor device
dimension is very small, device internal temperature gradients will not be large.
As a result, we can assume the temperature difference between two neighbor nodes
is not large, and temperature’s gradients is treated as constant, besides the electric
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field and mobility constant assumption:

Dn =
µnkbT

q
≈ const

Dp =
µpkbT

q
≈ const

E ≈ const

∇T ≈ const

We use the electron current density discretion as an example to deduct Scharfetter-
SG Discretion of
DDML2 Current

Equation

Gummel format with temperature. Now electron density equation can be written
as :

dn
dx

+
µn (qE + kb∇T )

qDn
n =

Jn

qDn
(9.94)

Let

a =
µn (qE + kb∇T )

qDn
=

E
VT (T )

+
∇T
T

(9.95)

C0 =
Jn

qDn
(9.96)

The general solution of ordinary differential Equation (9.94) can be written as:

n =
C0

a
+ C1e−ax (9.97)

substitution ni, n j into above equation as boundary condition, then

n = ni [1 − g (x)] + n j g (x) (9.98)

where

g (x) =
1 − e−ax

1 − e−a∆x (9.99)

After we obtain analytic expression of electron density, the electron density’s gra-
dients at middle point x = ∆x/2 can be solved out. Then we can obtain SG
discretion scheme of electron current equation.

Because afterwards we need to use carrier density at middle point, we put the SG
format as the following:

n|mid = ni aux2 (αn) + n j aux2(−αn) (9.100)

∇n
∣∣∣∣
mid

= aux1(αn)
n j − ni

∆x
(9.101)

Jn|mid = qµn|mid

(
n|mid

ψi − ψ j

∆x
+

kbT |mid

q
∇n

∣∣∣∣
mid

+
kbn|mid

q
∇T

∣∣∣∣
mid

)
(9.102)

p|mid = pi aux2 (−αp) + p j aux2 (αp) (9.103)

∇p
∣∣∣∣
mid

= aux1 (αp)
p j − pi

∆x
(9.104)

Jp|mid = qµp|mid

(
p|mid

ψi − ψ j

∆x
−

kbT |mid

q
∇p

∣∣∣∣
mid
−

kb p|mid

q
∇T

∣∣∣∣
mid

)
(9.105)

(9.106)

where

αn =
ψi − ψ j

2VT |mid
+

T j − Ti

2T |mid
(9.107)

αp =
ψi − ψ j

2VT |mid
−

T j − Ti

2T |mid
(9.108)
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All involved temperature can be expressed with linear interpolation, for example:

T |mid =
Ti + T j

2
(9.109)

∇T
∣∣∣∣
mid

=
T j − Ti

∆x
(9.110)

VT |mid =
kbT |mid

q
(9.111)

In DDML2, GSS will solve crystal thermal transfer equation:
Discretion of

Thermal Transfer
Equation

ρcp
∂T
∂t

= ∇ · κ∇T + J ·E + (Eg + 3kbT ) · (U −G) (9.112)

Temporarily we don’t consider transient problem and carrier generation, (Eg +
3kbT ) · U can be considered constant and directly integrated inside the control
volume,

With the basement from Poisson’s equation, discretion of ∇·κ∇T is not a problem.
The most difficult part is joule heating item J ·E.

Here we introduce GSS adopted discretion method. Put joule heating item as:

J ·E = −(Jn + Jp) · ∇ψ (9.113)

Consider Jn · ∇ψ’s integration inside Voronoi cell. Assume potential variation
inside a Voronoi cell is small, we have the following approximation:∫

Ωi

Jn · ∇ψdV =
∫

Ωi

∇ · (Jnψ) dV −
∫

Ωi

ψ∇ · JndVi

≈

∮
∂Ωi

Jnψ · dS − ψi

∮
∂Ωi

Jn · dS

=
∑

j

ψi + ψ j

2
Jmid∆L j − ψi

∑
j

Jmid∆L j

=
∑

j

ψi − ψ j

2
Jmid∆L j

(9.114)

Then, through Gauss formulae and an approximation we avoid to integration the
J · E over the Voronoi cell, yet the final discretion format is very simple. This
discretion format is independently thought out by the author, but afterwards, the
author also saw a similar paper in 1994 [44].

9.8 GSS Third Level EBM Solver
GSS third level EBM solver needs to solve up to 6 equations: Poisson’s equation,
electron and hole continuous equation, electron and hole energy balance equa-
tion and crystal lattice thermal transfer equation. Since the discretion scheme of
Poisson’s equation and crystal transfer equation is similar to the previous two sec-
tions, we won’t discuss it again. We focus on numerical discretion scheme about
continuous equation and energy balance equation.

We had mentioned hole equation can be obtained by replace kb in the electron
SG Discretion of

Current
Equation

equation with −kb. We only rewrite the electron current Equation (7.15) as below:

Jn = −qµnn∇
(
ψ −

kbTn

q

)
+ qDn∇n (9.115)
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Following SG discretion procedure, we rewrite it as an equation with electron
density n:

dn
dx
−

1
∆x


q
kb

∆ψ −∆Tn

Tn (x)

 · n =
Jn

qDn
(9.116)

Assume electric field density and electron temperature’s gradients are constant.
We solve the above equation with known electron density of two sides. After some
deduction, we can SG discretion scheme of electron current equation [45].

Jn =
qDn

∆x
T j − Ti

ln T j − ln Ti

[
B (α)

n j

T j
− B (−α)

ni

Ti

]
(9.117)

where

α =
ln T j − ln Ti

∆T

[
q
kb

∆ψ − 2∆T
]

(9.118)

Regarding energy balance equation’s discretion, we use the similar deduction of
SG Discretion of
Energy Balance

Equation

SG discretion procedure, rewrite electron energy flow as Equation (7.19):

S n = −
(5
2

+ γ
) k2

b

q
Tnµnn∇Tn −

5
2

kbTn
Jn

q
(9.119)

Rewrite the above formulae as ordinary differential equation with variable Tn:

dTn

dx
+

5
2(5

2
+ γ

) Jn

qDnn (x)
· Tn = −

S n(5
2

+ γ
)

kbDnn (x)
(9.120)

Electron temperature at both side is know as the boundary condition.

The most reasonable method is solving Equation (9.117) and Equation (9.120) self-
consistently. Unfortunately, the solution will be infinite series. So we need to do
some approximation here. For example assume the electron temperature gradients
is constant when we solve the current Equation (9.117). But obviously when we
solve the energy flow Equation (9.120), this assumption is destroyed. Currently
there are several different methods to solve the energy flow’s discretion. Tang’s
method shows electron density are separately solved from current equation and
energy flow equation, however, the difference of electron density from two solution
are very large [46]. While Forghieri’s method directly assume electron density as
exponential function distribution [45] during the discretion of Equation (9.120).
In 1994, Choi proposed a new energy flow equation discretion scheme, electron
density is solved from current Equation (9.117) and substitution it into energy
flow Equation (9.120). It decreases the mismatch between two, the new discretion
format can help to decrease electron temperature calculation error and enhance
the convergence [47].

GSS adopts Choi’s discretion scheme, the electron energy flow is:

S n = −
(5
2

+ γ
) kbDn

∆x
∆T

ln T j − ln Ti

B (α)
B (Φ)

B
(
Φ̃
) n j − B (−α)

B (Φ)

B
(
Φ̃
) ni

 (9.121)

where

Φ̃ =
ln T j − ln Ti

∆T

(
q
kb

∆ψ −∆T
)
− ln

n j

ni

Φ =
5
2(

5
2 + γ

) Φ̃ (9.122)
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We notice discretion of current equation and energy balance equation all involves
the following formulae:

∆T
ln T j − ln Ti

(9.123)

When lim
Ti→T j

, we need special treatment.

In the realization of EBML3E solver, the selection of independent variables needs
more attention. Regarding the additional energy balance equation (represented
with Fωn and Fωp), the author first consider electron temperature Tn and hole
temperature Tp as independent variables. However, for region with small electron

density, there is
∂Fωn

∂n
�

∂Fωn

∂Tn
, which means that Jacobian matrix loses diagonal

domination. It always leads to convergence problem. So referred from CFD, put
the independent variable as carrier density and temperature’s product nTn and
pTp. In this way we can secure Jacobian matrix’s diagonal domination, and have
better convergence property.

9.9 GSS Quantum Corrected DDM Solver
Dr. Andreas Wettstein published a series of papers [48][49][17], carefully studied
DG-DDM’s discretion scheme. His format although is not perfect in mathematic,
it is very effective in real practice. This scheme is integrated into Dessis software
later on.

For DG-DDM Equation (7.25), the discretion for Poisson’s equation as well as
DG-DDM

Discretion
Scheme

continuous equation keeps the same as canonical DDM equations, we won’t discuss
them again here. We focus on discretion scheme of quantum potential equation
caused by the gradients of electron density. Hole’s quantum potential equation
can also refer to this treatment. Integrate Equation (7.33) in control volume, and
use Gauss formulae we have:∫

Ωi

ΛndV = −bn

∮
∂Ωi

∇
√

n
√

n
dS (9.124)

where bn =
~2

6qm∗n
We notice

n = n0 exp
(

EFn − Eqc

kbT

)
= n0 exp (−Φ) (9.125)

where Φ =
Eqc − EFn

kbT
. Put this formulae into Equation (9.124), we have

Λn∆VΩi = −bn

∑
j

( √n j −
√

ni

di j
·

1
√

ni

)
·∆L j

= bn

∑
j

(
1 − exp

(
Φi − Φ j

2

))
·
∆L j

di j

(9.126)

Here j is the sum of all the neighbor nodes of i, ∆L j is the corresponding face of
Voronoi cell to node j , di j is the distance from node i to node j.

Dr. Wettstein at first uses Equation (9.126) as discretion scheme to electron
quantum potential equation. But the exponential items in Equation (9.126) easily
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lead to divergence. So he points out that when exponential item is positive, we
should use Taylor series expansion to avoid numerical overflow, which helps to
improve the numerical stability. The corrected discretion scheme is:

Λn∆VΩi =


bn

∑
j

(
1 − exp

(
Φi − Φ j

2

))
·
∆L j

di j
f or Φi < Φ j

bn

∑
j

Φ j − Φi

2
−

(Φ j − Φi)
2

8

 · ∆L j

di j
otherwise

(9.127)

Wettstein scheme does not have a conservation formula. For example when Φi <Non-
conservation

Formula

Φ j, the incense of quantum potential Λn of Voronoi cell i is obviously not equal to
the decrease of quantum potential Λn for Voronoi cell j. I have discussed with Dr.
Wettstein. His answer is that for hydrodynamics, this conservation is not tolerable,
but quantum potential is not a conservation quantity. And the application of this
scheme is good.

In GSS, DG-DDM realization meets another problem. The author select basic
Low Carrier

Concentration
Problem

independent variable as ψ, n, p, Eqc and Eqv (the last two variables are equal to
Λn and Λp). Noticing that the quantum potential equation contains EFn which
has the following formula:

EFn = −qφn = −q
(
ψ −

kbT
e

ln
(

n
nie

))
During Jacobian matrix evaluation, the derivative of EFn over electron density

have item like
1
n
. In low electron density region, the value of

1
n

is huge, which
leads loss of Jacobian matrix diagonal domination. The condition number be-
comes worse, leading to bad convergence in the end (similarly, hole has the same
problem). In energy balance model realization, author solved the similar problem
by reselecting the independent variables. But this time, we can not bypass it.
Silvaco cooperation’s ATLAS software has the similar problem. They assume a
QMINCONC variable: when carrier density is lower than this value, there is no
consideration of quantum effect [50]. GSS does not change the equation, but when
carrier density is lower than intrinsic carrier density, Jacobian matrix evaluation
does not consider partial differential item of electron (hole) density. This will lead
to inaccurate Jacobian matrix, which leads to slow convergence.

The author currently does not have good idea to solve above problems. Please
feel free to send email to the author if you have any solutions or suggestions.

9.10 Discretion the Carrier Generation Term
Impact ionization is an important phenomenon of semiconductor device, which
leads directly to device breakdown. For power device, the unwanted impact ion-
ization may limit the maximum voltage and current. How to optimize the device
geometry and doping profile for high voltage endurance is an interesting task.

Unfortunately, impact ionization is always difficulty in numerical simulation. It
is very easy to meet the convergence problem since breakdown current usually
increases exponentially. For further discussion please refer to "??", on page ??.

Rewrite impact ionization item GII mentioned in Equation (7.79) as:

GII = αn(E)| Jn |+ αp(E)| Jp | (9.128)
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Based on finite volume method, we need to calculate integral of GII over control
volume Ωi. Please note the driving electric field E is required for evaluating αn

and αp. For example, Equation (7.80) is αn expression for Selberherr model.

Here we calculate GII again inside the triangle, shown in Figure (9.14).

Figure 9.14: Impact ionization item’s treatment inside triangle unit

There are many choices for electric field magnitude and current evaluation. The
ESide Impact

Ionization Model
simplest and most non physical method is both electric field and current defini-
tion on the triangle edge. This method is called ESide model afterwards. GII is
considered as fixed value inside every shade area of Figure (9.14). The electric
field directly comes from electrostatic potential gradients of node v1 and v2. Here
current Jn and Jp are obtained directly by S-G scheme.

This method has stable numerical performance due to its simplicity. In early
semiconductor numerical simulation softwares, it was generally used. However,
its numerical simulation result is always higher than the real breakdown volt-
age. Simultaneously, simulation is very dependent on mesh. Accordingly it is
not recommended to use ESide model nowadays. The author puts it in to GSS
because whenever we meet convergence problem, ESide could be the last choice
as a reference.

Another improving method is to define the electric field inside triangle, called as
EVector Impact

Ionization Model
EVector model. This model uses Equation (9.84) and Equation (9.85) to evaluate
Ex and Ey inside a triangle, assuming electric field keeps constant inside the whole
triangle. Current still obtained directly by S-G scheme. EVector model is more
accurate than Eside model, however it still has non-physical part.

The EdotJ model, first appeared in Laux’s paper in 1985 [51], is the most physical
EdotJ Impact

Ionization Model
model as well as the most complicate model. This model is similar with his
mobility implementation [43]. In fact, when we realize Laux mobility model, its
impact ionization model has no more difficulty. In EdotJ model, electric field is
defined the same as what we mentioned for mobility EJ model:

E// =
max(0,E · J)

|J |
(9.129)

It clearly shows that only current parrel to electric field can lead to impact ion-
ization. Also, current Jn and Jp in Equation (9.128) is obtained from complicated
interpolation method Equation (9.89). Its only disadvantage is bad convergence,
calculation is easily diverge.
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There is another method for electric field intensity evaluation, called GradQf
GradQf Impact

Ionization Model
model, which uses the gradients of Fermi potential as the driving force of im-
pact ionization:

En = | ∇φn | (9.130)
Ep = | ∇φp | (9.131)

where Fermi potential φn and φp are defined in Equation (5.45).

In GradQf model, current along triangle edge should not be directly used, other-
wise it will lead to oscillation result. Author uses Equation (5.41) and Equation
(5.43) to obtain the current. The discretion format is:

| Jn | = µnn|mid
|φn,v2 − φn,v1 |

v1v2
(9.132)

| Jp | = µp p|mid
|φp,v2 − φp,v1 |

v1v2
(9.133)

The numerical result is smooth.

Here we can do some more simplify. When impact ionization takes evident place,
which means where is strong enough electric field existing. The drift current
driving by electric field will be much stronger than diffusion current. If we omit
diffusion current and only consider drift current, the final result difference is less
than 10%. Accordingly when the request is not strict, the previous two formulae
can be simplified as:

| Jn | = µnn|mid
|ψv2 − ψv1 |

v1v2
(9.134)

| Jp | = µp p|mid
|ψv2 − ψv1 |

v1v2
(9.135)

For left part of shade area of Figure (9.14), which belongs to node v1’s Voronoi
volume, impact ionization integration at this region can be written as:∫

shadow
GIIdV =

d3
4

[αnµnn|mid (|φn,v2 − φn,v1 |) + αpµp p|mid (|φp,v2 − φp,v1 |)] (9.136)

Triangle’s other region can follow this treatment.

In GSS, GradQf model is the default impact ionization model. It has good con-
vergence and high accuracy for diode and bipolar transistors. But when current
moving does not follow electric field direction, eg. "??", on page ??, GradQf model
can not gives correct result. For this situation, EdotJ model should be used.

Tunneling leading carrier generation GBB has following format:
Band-band
Tunneling

GBB = α ·
E2√
Eg
· exp

(
−β ·

E3/2
g

E

)
(9.137)

It only involves the magnitude of electric intensity E. The discretion is relatively
easy. The electric field intensity can be calculated with Equation (9.84) and
Equation (9.85).

9.11 Boundary Condition Processing
From the theory of partial differential equations, we know that the PDEs can
converge to physical solution when correct boundary conditions are given.

The boundary condition specification is a very important and complicated ques-
tion in semiconductor simulation. The boundary condition should be flexibly
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selected based on different device structure and simulation state. GSS supports
many boundary conditions, roughly be divided into electrodes and interfaces.

Electrode boundaries include

Ohmic contact electrode
Schottky contact electrode
Gate contact electrode
Simple gate contact electrode

Each electrode can be contacted to external lumped-parameter devices, other
electrodes or SPICE circuit. And we can select voltage stimulation or current
stimulation to electrode. Current stimulation model is suitable for high inject
simulation and/or when current is a multiple-value function of voltage, for which
the voltage stimulation will lead to branch.

Besides, GSS supports material interfaces, including

Semiconductor - Oxide interface
Semiconductor - Metal interface
Semiconductor - Semiconductor interface, heterogenous junction
Semiconductor - Semiconductor interface, homogenous junction
Neumann Boundary

9.11.1 Neumann boundary
Neumann boundary exists on the surface of semiconductor body or artificially
introduced boundary far from active region. For this boundary type, carrier will
not be able to go through the boundary, and electric field perpendicular to the
interface is zero. There is n̂ · ∇ψ = 0.

For boundary, Voronoi cell is only half as the complete inner cell, shown in the
Figure (9.15).

Figure 9.15: Boundary’s voronoi

Due to the Neumann boundary condition, the flux function F on the segment
m1m5

F =


ε∇ψ

1
q
Jn

−
1
q
Jp


gives no contribution to Voronoi cell P0. As a result, we can safely skip this
boundary.

We need to pay attention that we can not set all the boundary as Newmann
boundary condition. In this case the device is "floating". Since the electrostatic
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potential ψ does not have a reference "zero", it can be any value. For example,
add any function ψ′ satisfying ∇2ψ′ = 0 to ψ, the original Poisson’s equation will
still hold. From mathematical point of view, in order to give ψ a unique solution,
we have to give the first or the third boundary condition some where. From
physical point of view, we have to give at least one electrode boundary condition
of a device.

9.11.2 Ohmic contact electrode

Ohmic electrode is the most commonly used electrode boundary. It is imple-
mented as Dirichlet boundary conditions, where electrostatic potential ψ, elec-
tron concentration n, and hole concentrations p are fixed. Minority and majority
carrier quasi-Fermi potentials are equal to the applied bias of the electrode.

φn = φp = Vapp (9.138)

where, the relationship of Fermi potential and Fermi level is EFn = −qφn, EF p =
−qφp.

For non-degenerated carriers satisfying Boltzmann statistics, starting from charge
balance condition:

n + NA = p + ND (9.139)

The relationship of Fermi potential and carrier concentration are given by
Equation (4.2) and Equation (4.3). We substitution them into above equation
will yield:

n =
ND − NA +

√
(ND − NA)2 + 4n2

ie

2
(9.140)

p =
NA − ND +

√
(ND − NA)2 + 4n2

ie

2
(9.141)

and

ψintrinsic = φn +
kbT

q
ln

(
n

nie

)
= φp −

kbT
q

ln
(

p
nie

)
= Vapp +

kbT
q

asinh
(

ND − NA

2nie

)
(9.142)

Noticing in GSS, relationship of ψ and ψintrinsic are given by Equation (7.4). The
electrostatic potential in the real code is

ψ = Vapp +
kbT

q
asinh

(
ND − NA

2nie

)
−
χ

q
−

Eg

2q
−

kbT
2q

ln
(

Nc

Nv

)
(9.143)

For degenerate condition, we need to consider Fermi Statistics. GSS solves the
following equations:

Fψ (ψ, n, p) = Nc F (ηn) + N+
A − Nv F (ηp) − N+

D = 0
Fn (ψ, n, p) = n − Nc F (ηn) = 0
Fp (ψ, n, p) = p − Nv F (ηp) = 0

(9.144)
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where, N+
A and N+

D are the effect doping concentration where incomplete ionization
are considered. Other variables are shown below:

ηn =
−qφn − Ec

kbT
=
−qVapp − Ec

kbT
(9.145)

ηp =
Ev + qφp

kbT
=

Ev + qVapp

kbT
(9.146)

Ec = −qψ − χ (9.147)
Ev = Ec − Eg (9.148)

For above three equations, only ψ, n and p are independent variables. By using
Newton’s iteration method, we can solve Equation (9.144) numerically for ψ, n
and p. Attention that Fψ should not be written as Fψ = n+N+

A −p−N+
D . Although

it is the same in maths, however during Newton iteration, the diagonal item of its
Jacobian matrix 0, which is easy to precondition failure.

Total current density flow out of ohmic electrode is the sum of current flux of all
the boundary Voronoi cells, shown in figure Equation (9.16). Since the carrier

Figure 9.16: Ohmic contact electrode’s total current density

density of Ohmic boundary keeps unchanged, current flow into ohmic boundary is
the same as current flow out of ohmic boundary. In Figure (9.16), current density
flow out of Voronoi cell c is

J = h1Jca + h2Jcb + h3Jcd + h4Jce (9.149)

where displacement current density and conduction current density are both con-
sidered. Using jca as an example:

Jca = Jn,ca + Jp,ca + εs
∂Eca

∂t
(9.150)

Because GSS is a 2D model, the third dimensional depth Z.Width are defined, so
that we can transfer current density to current. As a result, the external circuit
can be considered and work together with GSS.

9.11.3 Schotkey contact electrode
Schottky contact electrode’s boundary needs metal’s work function WORKFUNC.
Electric potential’s definition is the following:

ψ = Vapp −WORKFUNC (9.151)

Here electric potential is still Dirichlet boundary condition.

It is worthy to mention that because interface recombination rate can not be in-
finity, φn, φp will not be equal to Vapp. In order to obtain carrier density equation,
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we introduce Schottky interface’s ejection current density [52]:

Jsn = qvsn (ns − neq) (9.152)
Jsp = qvsp (ps − peq) (9.153)

where Jsn and Jsp are current density through Schottky interface. ns and ps are
electron, hole density. neq and peq is electron, hole density with assumption of
surface infinite recombination rate.

neq = Nc exp
(
−qΦB

kbT

)
(9.154)

peq = Nv exp
(
−Eg + qΦB

kbT

)
(9.155)

where ΦB is potential height. vsn and vsp are surface recombination velocity:

vsn =
A∗nT2

qNc
(9.156)

vsn =
A∗pT2

qNv
(9.157)

Where A∗n and A∗p are electron and hole effective Richardson coefficients separately.
In order to consider mirror force correction and tunneling effects on potential
decrease, GSS has the following correction [8]:

∆ΦB(E) =
√

qE
4πεsemi

+ α · Eγ (9.158)

Where, E is interface electric intensity’s absolute value. α and γ’s typical value
can be found in [8]. So Equation (9.154) and Equation (9.155)’s electron potential
correction is ΦB −∆ΦB, hole potential correction is ΦB + ∆ΦB.

After obtain current density through interface, electron and hole density’s value
can be obtain from continuous equation. And Schottky electrode’s total current
density value is equal to the sum of every voronoi’s ejection current density and
displacement current density.

9.11.4 Semiconductor insulator interface
Semiconductor insulation interface is quite general. For example MOS structure,
SOI structure and etc. GSS software supports semiconductor insulation layer
interface, and we provide a relative easy method for MOS device gate electrode.

In fact, semiconductor insulator interface for carriers is a solid wall. For Contin-
uous equation, semiconductor insulator interface is Neumann type boundary. All
important interface character will be represented by Poisson equation.

For semiconductor insulator interface, Poisson equation’s boundary condition is

εs
∂ψ

∂n
− εi

∂ψ

∂n
= σ (9.159)

where εs and εi are semiconductor and insulator’s dielectric constant separately.
n is semiconductor to insulator’s normal vector. At the insulator side, if there is
metal or poly silicon to form gate electrode, then gate and insulator contact forms
gate electrode boundary condition. In GSS, gate electrode’s electric potential is

ψ = Vapp −WORKFUNC (9.160)

This expression accords to Schottky electrode’s electric potential boundary con-
dition.
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Because MOS device gate oxide thickness is normallly thin, it is difficult for most
of the cases. And this think structure is also a challenge for mesh. Normally
it leads to too many nodes. GSS provides simplified gate electrode boundary
condition. Users only need to select gate oxide thickness d, dielectric constant εi,
gate electrode work function, WORKFUNC, and does not need to show gate
oxide layer’s modeling. But this model will not take care of oxide fix charge.
In figure Figure (9.17), put Poisson equation’s boundary condition to Equation
(9.159) oxide layer side’s directional derivative can be approximated as

εi
∂ψ

∂n
= εi

Vapp −WORKFUNC − ψ
d

(9.161)

So, semiconductor insulator interface silicon part boundary condition is

εi
Vapp −WORKFUNC − ψ

d
− εs

∂ψ

∂n
= σ (9.162)

This is the third type boundary condition.

Figure 9.17: Simple MOS Gate Electrode

9.11.5 External circuit for electrode
Up to now, GSS has three electrode boundary conditions. Ohmic electrode and
Schottky electrode can let current flow in-out for both steady state and transient
state. But MOS gate dielectric only have displacement current when biased with
a variational source.

In order to put semiconductor device at suitable circuit condition, GSS assigns
electrode with simple external circuit structure. Ohmic electrode and Schottky
electrode can be voltage drive or current driven. However, MOS gate electrode can
only have voltage source. Figure (9.18) shows the external circuit for electrodes.
When the electrode is voltage driven, the lumped element R, C and L defined by
user are considered. And for current driven situation, the electrode only has a
current source.

In GSS software, all the electrodes have an additional external circuit current-
voltage equation. For this we introduced third dimension width Z.Width to trans-
form current density to current.

After having two types of external circuit structure, GSS software can simulation
simple circuit. The influence of parasitical R, C and L caused by inter-connection
of a transistor can be directly simulated by GSS. And GSS can take care of typical
bipolar or MOS amplification circuit without any problems. For more complicate
circuit, GSS can work with SPICE software to do mixed type simulation. Please
refer to GSS extension chapter.
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Figure 9.18: Electrode with voltage driven or current driven

9.11.6 Thermal boundary condition
GSS second level solver supports temperature field calculation. We need to in-
troduce corresponding thermal transfer boundary condition. GSS requires two
types of boundary conditions for thermal conduction equation: one for interface
between two materials and another for thermal conduction at device surface.

The thermal conduction between two material can be performed to i.e. silicon
dioxide and silicon interface, which is important for thermal analysis of SOI device.
Suppose there is no thermal source on the boundary, the governing equation has
the formula as bellow:

κ1
∂T
∂n
− κ2

∂T
∂n

= 0 (9.163)

However at device surface and electrode interface, we allow thermal exchange with
external environment and introduce thermal exchange coefficient h to represent
the exchange speed. The thermal exchange boundary condition is

∂T
∂n

= h (Text − T ) (9.164)

where Text is the environment temperature, which is fixed during the simulation.

The default thermal exchange coefficient h for Neumann boundary is zero for
default. However electrode usually has a large thermal exchange coefficient h, the
default value is set to the thermal exchange coefficient as silicon to copper.

Please attention, we should not set all the boundary’s thermal exchange coefficient
to zero, which means the system is thermal insulated. For a thermal insulated
system has internal thermal source, steady state analysis is obviously not possible
to have stable result.

9.11.7 Carrier temperature boundary condition
GSS third level solver involves energy balance equations, which require bound-
ary conditions for electron and hole temperature. GSS uses following assuming:
At device surface, the carrier temperature has a zero gradient perpendicular to
the interface, which is a Neumann type boundary condition; For the boundary
condition at electrode, we force carrier temperature equal to lattice temperature:

Tn = Tp = T (9.165)
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The above assuming is something rough, which requires surface and electrode to
be far away from active region. We need to consider this and try to satisfy it
during modeling.

9.11.8 Hetero-junction

Heterogenous junction is very complicate in physics, especially the current through
heterogenous junction. GSS as the canonical simulation software, can only sup-
port heterogenous junction description to certain extent. Heterogenous interface’s
electrode potential condition is two material interface’s Poisson equation. Figure
Figure (9.19) shows heterogenous junction’s energy band diagram. We can see
that except vacuum energy level, conduction band, valance band and intrinsic
Fermi energy all have discontinuous effect in the interface. Because electric po-
tential can not have sudden change, adopting vacuum potential as semiconductor’s
Poisson equation’s variable is the most suitable case.

Figure 9.19: Heterogenous junction energy band diagram

Figure Figure (9.19) shows vacuum potential and intrinsic Fermi potential’s rela-
tionship.

ψ = ψvacuum = ψintrinsic − θ (9.166)

where, θ represents energy band parameter

θ =
χ

q
+

Eg

2q
+

kbT
2q

ln
(

Nc

Nv

)
(9.167)

AT the boundary, Poisson equation satisfy boundary condition

εs1
∂ψ

∂n
− εs2

∂ψ

∂n
= 0 (9.168)

Here we do not consider interface state leading surface charge.

Heterogenous junction’s current adopts k. Hess and G.J. Iafrate proposed model
[53]. Assume electron jumping from material 1 to material 2 through potential
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barrier, which means Ec2 > Ec1, now the electron current can be represented as:

Jn,1−>2 = A · T2
1 · exp

(
EFn1 − Ec2

kbT1

)
(9.169)

Jn,2−>1 = A · T2
2 · exp

(
EFn2 − Ec2

kbT2

)
(9.170)

where A is Richardson coefficient. Hole current has the similar format.

9.11.9 Boundary condition for DG-DDM
Here we discuss the boundary condition for quantum potential equations of density
gradient model.

In practical, quantum effect usually only happens at certain limited region, for
example, the MOS inversion layer or quantum wells of resonant tunneling diode
(RTD). The quantum region needs to be small enough to march the wave length
of electron and the quantum effect will decreases sharply outside this small region.
As a result, the quantum effect far away from quantum region is not important.

The electrodes and surface boundaries are usually far away from quantum regions.
The boundary condition for quantum potential is not very critical. Here we can
assume quantum conduction band and quantum valance band energy at electrode
equal to conduction band and valance band energy, respectively.

Λn =
Eqc − Ec

q
= 0

Λp =
Eqv − Ev

q
= 0

(9.171)

And for surface boundary, we assume Neumann type boundary condition: ∂nΛn =
∂nΛp = 0.

For MOS, the quantum effect happens at Si/SiO2 interface. The boundary con-
dition for quantum potential at this interface needs careful consideration. For a
simple MOS structure we mentioned in "Semiconductor insulator interface", on
page 128, since SiO2 layer is not explicitly build, we need the truncated formu-
lae of Equation (9.124) at the interface. According to the result quantum WBK
equation, electron density into SiO2 will degrade with the following relationship
[54]:

n(x) = n0 exp (−2x/xnp) (9.172)

where

xnp =
~

√
2mnoxΦBn

(9.173)

is the characteristic penetration depth of electron obtained from the WKB equa-
tion. Here mnox = 0.4m0 is the effective mass in SiO2. ΦBn = 3.15eV is the
electron potential barrier height. As a result, Si/SiO2 interface has the following
relationship:

bnox∇
√

n = −
bnox

xnp

√
n0 (9.174)

where

bnox =
~2

6qm∗nox
(9.175)

GeniEDA Corp. 132 GSS User’s Guide



Chapter9. Numeric Method of Drift-Diffusion Model 9.12 Transient Simulation

And m∗nox = 0.14m0 is electron effective mass in SiO2.

Holes should have similar relationship. However currently the data for hole is not
enough, we can only make sure ΦBp = 4.10eV. The author assume mpox = 0.4m0,
m∗pox = 1.0m0. After having detail data we will do correction.

For constructing SiO2 with poly silicon gate device, we can treat SiO2 as wide
band semiconductor material and solve DG-DDM equations on Si bulk, SiO2 layer
and poly silicon gate consistently, keeping quantum potential continuous for each
interface.

Besides, for device with quantum wells deposited by different band gap materials,
which also has quantum potential continuity at the material interface.

9.12 Transient Simulation
When space discretization finished, DDM equations are converted into large scale
ordinary differential equations (ODEs):

dQ
dt

= F(Q) (9.176)

For steady-state simulation, there is
dQ
dt

= 0. However, if transient simulation is
required, we must consider suitable time discretization method. We had already
mentioned in "Constants in Semiconductors", on page 52 that explicit method
always has a strict time step limitation, usually at femto-second level, which is
limited in real application. Practical code must adopt absolute stable implicit
algorithm, so that we can use relatively large time step. Furthermore, due to the
high stiffness of ODEs arising from space discretion of semiconductor equations,
the time discretion algorithm should not only A stable but also L stable [55].

First, we should choose ODE discretization scheme with A Stable. The most
A Stable simple and famous formulas here are first order implicit Euler (EB) method and

second order Crank-Nichloson (CN) method:

yn+1 − yn

∆t
= f (yn+1) (9.177)

and

yn+1 − yn

∆t
=

1
2

( f (yn) + f (yn+1)) (9.178)

For model equation:

y′ = λy , Re(λ) ≤ 0 (9.179)

consider stability functions of both methods:

REB(z) =
1

1 − z
(9.180)

and

RCN(z) =
1 −

z
2

1 +
z
2

(9.181)

where, z = ∆tλ, and ∆t is the time step.
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The previous two formulae both satisfy |R(z)| ≤ 1, which means they are absolute
stable, with no restrictions to the time step.

However for stiff problems, which satisfies λ � ∆t, resulting in very large z = ∆tλ,
L Stable the result is completely changed. Here we take z to its limit, which turns to be

infinity, the stability function of 1st order implicit Euler method becomes:

lim
z→−∞

REB(z) = lim
z→−∞

1
1 − z

= 0 (9.182)

and for 2nd order Crank-Nichloson method:

lim
z→−∞

RCN(z) = lim
z→−∞

1 +
z
2

1 −
z
2

= −1 (9.183)

Since the exact solution of Equation (9.179) is lim
z→−∞

ez = 0, it is obvious that
Crank-Nicholson has problems.

We notice yn+1 = R(z)yn , which means 2nd order Crank-Nichloson method will
lead to oscillation result, which is demonstrated in Figure (9.20). However, the
implicit Euler method keeps correct for this limitation.

Figure 9.20: numerical result of model equation y′ = −200(y − cos t) , y(0) = 0

Define a scheme is L-stable if lim
z→−∞

R(z) = 0. The conclusion is although 2nd order
Crank-Nichloson method is A stable, but not L stable. Numerical experiment
did prove it will lead to oscillation in semiconductor simulation. So it can not be
adopted in our code.

Although implicit Euler method both satisfies A stability and L stability, it is
a 1st order accurate algorithm, which has relatively large local truncated error.
Since the error will be accumulated during every time step, the 1st order method
can not ensure long time simulation accurate. For practical, we should find some
higher order method.

Second order algorithm satisfying the A and L stable includes backward differ-
BDF2 and
TR-BDF2

entiation formulae 2 (BDF2) and trapezoidal BDF2 (TR-BDF2). BDF2 is a two
step algorithm, which needs relatively larger memory size:

3yn+1 − 4yn + yn−1 = 2∆t f (yn+1) (9.184)
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TR-BDF2 is a single step format, yet slightly more accurate than BDF2. However,
for each time step it requires two Newton iterations, computation load is much
higher than BDF2:

y∗ = yn +
∆t
4

( f (yn) + f (y∗))

3yn+1 − 4y∗ + yn = ∆t f (yn+1)
(9.185)

CFD code often chooses BDF2 algorithm against TR-BDF2. First it is because
the burden of hydrodynamics calculation is heavy. It is reasonable to buy speed
with big memory size. The second reason is the numerical viscosity introduced by
truncated error of BDF2 often helps smooth the numerical solution. PISCES-IIB
adopts TR-BDF2 algorithm [56]. That is because at 1980s memory size is very
limited. The PISCES code was requested to be run on machine with only 8MB
memory. However, MEDICI code, which is the commercial version of PISCES-IIB,
uses BDF2 method.

GSS adopts both Euler and BDF2 algorithm. Because BDF2 needs current and
previous result, implicit Euler method should be used for the first time step cal-
culation. After that, BDF2 can start to work.

Since the truncated error of implicit Euler method is O(∆t), the first time step
should keep small enough to avoid large truncated error. After BDF2 is activated,
truncated error is O(∆2t). Time step can be larger. Further more, GSS has an
automatic time step selection algorithm for speed up the transient simulation and
control the error. Please refer to the next section.

Because the time step can be variational, BDF2 needs the following correction:

1
tn+1 − tn−1

(
2 − r
1 − r

yn+1 −
1

r (1 − r)
yn +

1 − r
r

yn−1
)
= f

(
yn+1

)
(9.186)

where

r =
tn − tn−1

tn+1 − tn−1
(9.187)

9.13 Automatic Time Step Control
The local truncated error (LTE) based automatic time step control is a widely
used technique in ODE numerical solution. Its first application in semiconductor
simulation can be retrospected to BANK etc in 1985 [?]. Due to the importance
of transient simulation, GSS also adopts this technique.

For estimating the LET of 1st order implicit Euler method, its semi-discrete
LET of Implicit
Euler Method

scheme can be written down:
xn+1 − xn

hn
= f (xn+1) (9.188)

where hn = tn+1 − tn. The LTE of this scheme is:

LTE =
xn+1 − xn

hn
−

dx
dt

=
h2

n

2
d2x
dt2

+ O
(
d3x
dt3

)
(9.189)

Clearly, for getting the LTE, one should evaluate the second order derivative of
d2x
dt2

. For this purpose, we linear interpolate the predict value of n + 1 time step

xp
n+1 from xn−1 and xn:

xp
n+1 =

(
1 +

hn

hn−1

)
xn −

hn

hn−1
xn−1 (9.190)
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Noticing that from Taylor series, the difference between xn+1 and xp
n+1 is

xn+1 − xp
n+1 =

hn (hn + hn−1)
2

d2x
dt2

+ O
(
d3x
dt3

)
(9.191)

Thus, the LTE can be expressed as:

LTE(BE) =
hn

hn + hn−1

(
xn+1 − xp

n+1

)
(9.192)

For BDF2 scheme, we can get the LET by the same procedure [57]. The LTE of
LET of BDF2

Method
its semi-discrete scheme is

LTE = −
h2

n (hn + hn−1)
6

d3x
dt3

+ O
(
d4x
dt4

)
(9.193)

here, we need to construct a second order predict value of xp
n+1. As a result,

the previous value xn, xn−1 and xn−2 are used to do a second-order polynomial
interpolation:

xp
n+1 = c1xn + c2xn−1 + c3xn−2 (9.194)

where

c1 = 1 +
hn (hn + 2hn−1 + hn−2)

hn−1 (hn−1 + hn−2)

c2 = −
hn (hn + hn−1 + hn−2)

hn−1hn−2

c3 =
hn (hn + hn−1)

hn−2 (hn−1 + hn−2)

Here we also use Taylor series to expend xn+1 − xp
n+1:

xn+1 − xp
n+1 =

hn

6
(hn + hn−1) (hn + hn−1 + hn−2)

d3x
dt3

+ O
(
d4x
dt4

)
(9.195)

As a result, the LTE can be expressed as:

LTE(BDF2) =
hn

hn + hn−1 + hn−2

(
xn+1 − xp

n+1

)
(9.196)

The time step control should satisfy the LTE of each time step be limited in a
Time Step

Control Based
on LET

certain level:

LTE < Euser (9.197)

In the application, Euser can be expressed in terms of a relative error tolerance
and an absolute error tolerance parameter εr and εa, respectively.

Euser = εr

∣∣∣xn+1

∣∣∣ + εa (9.198)

The default value in GSS code are εr = 10−3, εa = 10−4.

The time step can be controlled by considering the relative error of the allowable
error Euser and the actual local error LTE.

r =
LTE
Euser

=
Ck+1hk+1

n x(k+1) (tn)

Ck+1hk+1
allowablex(k+1) (tn)

=
(

hn

hallowable

)k+1

(9.199)
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where k is the order of ODE scheme, for implicit Euler k = 1, and for BDF2 k = 2.

The relative error r is estimated by following strategy in the GSS code. Since the
Poisson’s equation does not time relatively, it is not considered in LET estimation.
The time related continuation equations of DD model are estimated for r:

r =

 1
N

∑(
LET ( fn, fp)
εr |n, p|+ εa

)21/2 (9.200)

For convenient, defining rLE = r−
1

k+1 here. The time step selection criterion in
GSS code is now described.

• If rLE < 0.9, then the current result is rejected. GSS uses new time step
h∗n = hn · rLE to re-calculate the solution for tn+1.

• For values of rLE ≥ 0.9, the current solution is considered acceptable and
the new time step is taken to be min(hn · rLE , 2hn, hmax). Where hmax is the
maximal time step defined by user.

+ Note:

Since the prediction of xp
n+1 needs previous values, the automatic time step con-

trol can only start at third time step for Euler method and forth time step for BDF2.
Besides, the predict value can be a good initial value of xn+1, which can improve the
convergence and save computation time.

9.14 Nonlinear Solver: Newton’s Iteration
Method

When space, time are discretized, semiconductor drift diffusion model forms non-
linear linear algebra equation set. Semiconductor numerical method’s last step is
to solve this up to thousands order’s non-linear equation set.

In history, semiconductor model has non coupling method Gummel method [58]
and coupling method Newton two methods. Gummel method does not solve all
the equations together, it uses iterate gradually technique. First assume carrier
concentration is constant, solve Poisson equation, then put Poisson equation’s
result into two continuous equation to solve the carrier’s concentration. Keep
doing iteration until convergence. Gummel method is a poor method, which
needs small memory size and is also fast in certain circumstances. But this non
coupling algorithm needs many iterations when equations’ coupling is strong. For
example current is mainly contributed by voltage drive drift current, which needs
a lot of iteration to converge. On the other hand, Newton method considers all
the equation sets together, which has better stability and fast convergence speed,
each iteration cost is high. Newton method’s disadvantage is that it needs to
construct and save complicate Jacobian matrix. Every iteration needs to solve
huge linear equation set. Fortunately as computer memory and performance’s
improvement, solving huge linear equation set requested memory and time turns
to be acceptable. So Newton method is generally used. GSS only provide full
coupled Newton method’s support. Generally, non-linear equation solving is
to search as solution vector x to let f (x) = 0. Non-linear equation’s solving
is always a difficult problem. From method point of view, there is stable itera-
tion method, fastest decrease method and Newton method. Currently the best
non-linear solution method is not Newton method, although Newton method has
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different improved versions. Here we introduces Newton method and its improved
version, for further understanding non-linear equation’s solution theory, please
refer to [59].

9.14.1 Line Search method
Newton method needs to calculate f (x) and its gradients g(x) = ∇ f (x), through
solving linear equation

gT (x) · pk = − f (xk) (9.201)

we obtain pkÎł f (xk)’s Newton decrease vector. Newton method’s iteration is

xk+1 = xk + pk (9.202)

Iterate until certain convergence condition is satisfied. For example

‖xk+1 − x∗‖ 6 β‖xk − x∗‖ (9.203)

where β is certain positive constant.

Newton iteration’s convergence and initial value is correlated to g(x). If initial
value is inside real solution’s convergence region. But for many conditions accu-
rately calculating g(x) is still very difficult. And accurate initial value is not easy
to obtain. In order to improve Newton method’s generality, there are two different
techniques: linear search and trust region, which be help to improve convergence
performance [59][60]. Linear search method is essentially a one dimensional min-
imization problem, shown in figure Figure (9.21). We notice formulae Equation

Figure 9.21: Linear search method’s illustration diagram

(9.201) solved pk represents f (x) at x = xk decrease direction. Rewrite Equation
(9.202) as

xk+1 = xk + λpk (9.204)

where, λ is a tunable parameter, representing pk direction’s searching step. If
λ = 1, it is basic Newton method. And typical linear searching method uses three
times multi nominal interpolation so that f (x) reaches minimum value through
pk direction.

In fact algorithm defines slope g(λ) = gT (xk + λpk) · pk. Linear search normally
starts from λ = λ1ąćλ = λ2’s function value f1 = f (xk + λ1pk), f2 = f (xk + λ2pk)
and slope g1 = g(λ1), g2 = g(λ2), forming third order multiple nominal

p (λ) = a (λ − λ1)
3 + b (λ − λ1)

2 + c (λ − λ1) + d (9.205)
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where

a =
−2 ( f2 − f1) + (g1 + g2) (λ2 − λ1)

(λ2 − λ1)
3

b =
3 ( f2 − f1) − (2g1 + g2) (λ2 − λ1)

(λ2 − λ1)
2

c = g1

d = f1

So by solving p (λ)’s minimum value we can obtain

λ = λ1 +
−b +

√
b2 − 3ac

3a
(9.206)

Now we need a , 0 and b2 − 3ac > 0. If the previous condition is not satisfied, we
need to use f1, f2 and g1 for 2nd order interpolation to obtain

p (λ) = b (λ − λ1)
2 + c (λ − λ1) + d (9.207)

Now p (λ)’s minimum value requests

λ = λ1 −
c
2b

(9.208)

Because we used f1, f2 and g1 to construct p (λ), b = 0 shows p (λ) is not a linear
function.

When λ is fixed, we still need a set of mechanism to judge whether interpolation’s
λ is acceptable. Armijo’s judgement is relatively convenient and generally used
[59], which needs f (xk + λpk) 6 f (xk) + αλgT (xk)pk

|gT (xk + λpk)pk | 6 | βgT (xk)pk |
(9.209)

where0 < α < β < 1, α represent the upper limit of λ from function value point
of view, β represents the lower limit for λ. GSS’s non-linear solver default value
α = 10−4, β = 0.9. Normally it starts from λ1 = 0, λ2 = 1. If λ is accepted, this
iteration is finished, otherwise decrease λ2 to search a acceptable λ.

The previous discussion is for single non-linear equation. If for equation set,
there is similar conclusion. Now single equation’s gradients g(x) turns to be
equation set’s Jacobian matrix. And λ needs to cater each equation. From the
discussion above, searching with direction pk is always considered to be accurate.
So gradients g(x) or equation set’s Jacobian matrix needs to be accurate or
approximately accurate, otherwise searching method is easy to fail.

9.14.2 High speed decrease method
Before introducing Trust Reign method, we must discuss about fastest decrease
method, which is proposed by French scientist Cauchy, also called Cauchy method.
Assume non-linear equation f (x) gradients is g(x) = ∇ f (x), target function is
continuous and has derivative at close to xk. So expand f (x) with Taylor
expansion at xk.

f (x) = f (xk) + gT
k (x − xk) + o (‖x − xk‖) (9.210)

Éèx − xk = dkčňÉÏÊ¡£ÉÒÔÐťşÉ

f (x) = f (xk) + gT
k dk + o (‖dk‖) (9.211)
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If gT
k dk < 0, then dk is the decreasing direction, which leads f (xk +dk) < f (xk). In

order to reach fastest decrease speed, we need gT
k dk to be the minimum value. We

can prove that only when dk = −gk, gT
k dk has the minimum value. So we called

−gk the fastest decrease direction. So the fastest decrease method’s iteration is

xk+1 = xk − g (xk) (9.212)

Although this method is easy, it decreases very slowly, we can prove its convergence
speed is linear.

9.14.3 Trust Region method
Trust region needs no accurate Jacobian matrix J, consider the following Newton
iteration

J ·∆xk = − f (xk) (9.213)

If Jacobian is not accurate, then we use B = J+ λI to replace Jacobian , where
λ is a very big value. Obviously J’s value is covered by λI, ∆xk goes through
− f (xk)’s direction. Newton iteration now turns to be fastest decrease method,
and the step ‖∆xk ‖ turns to be very small. We can prove that if the step is
enough small the iteration can be converged at J. This is Trust region method.

In reality, trust region method assume xk as the current iteration point. Then use
xk as center, δk as radius’s close sphere region solve a sub problem. Where δk is
decided by the specific problem, which always needs to be given.

Assume dC is the fastest decrease searching direction, then the testing step dk is

dk = dC + λ (dN − dC) (9.214)

We can see testing step is composed by fastest decrease method and Newton
method. If Jacobian matrix is odd, testing step will turns to be fastest decrease
method. In searching process, we need to solve testing step dk in the trust region.
It means at every iteration testing step needs to satisfy ‖dk ‖ < δk. So λ ∈ [0, 1]
and choose testing step satisfying ‖dk ‖ < δk’s maximum value. After obtaining
dk, we use an evaluation function dk to decide whether it it acceptable or not.
Let xk+1 = xk + dk, or decrease the trust region radius. In real practice, initial
δk value is not important. If initial δk is too small trust region method is easily
converged to regional optimized solution.

9.14.4 Jacobian matrix’s construction
Newton method needs to construct Jacobian Matrix. This step in GSS cost the
author a lot of energy. We need to consider DDML1’s equation set.

Fψ (ψ, n, p) = 0
Fn (ψ, n, p) = 0
Fp (ψ, n, p) = 0

(9.215)

Its Jacobian matrix has the following format

∂Fψ
∂ψ

∂Fψ
∂n

∂Fψ
∂p

∂Fn

∂ψ

∂Fn

∂n
∂Fn

∂p
∂Fp

∂ψ

∂Fp

∂n
∂Fp

∂p


(9.216)
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For N nodes problem, DDML1 equation set has 3N equations. And Jacobian ma-
trix has 3N × 3N order. But because differential symbol’s regional characteristics,
every nodes equation is only related to its neighbor nodes. During solving deriva-
tive, every nodes’ equation needs only process for its own node or its neighbor
nodes. So Jacobian matrix is sparse. Generally, every nodes’ neighbor has
5 ∼ 7, corresponding matrix width is 3*(neighbor nodes number+1), approxi-
mately around 18 ∼ 24. Drift diffusion model discretion leads non-linear equation
set easy to solve difference. In GSS code, Jacobian matrix is manually written,
which cost a lot of energy to make sure the accuracy. So GSS suggest to use
Line search method. In fact calculating this method leads to fast convergence.
Iteration number is normally less than 10. Trust region method’s calculation nor-
mally needs longer time than Line search method. But for certain, when the
Jacobian matrix is almost singular, the problem is solved more efficiently.

If there is a new algorithm needs to be insert to GSS, first we need to adopt
self difference to replace manual difference to obtain Jacobian matrix, called
Matrix-Free method [61]. Put Newton method solved linear equation set

f ′(x) ·∆xk = − f (xk) (9.217)

left hand side as difference approximation

f ′(x) ·∆xk ≈
f (xk + h∆xk) − f (xk)

h
(9.218)

where h is a tunable parameter. Matrix-Free method does not use obvious formulae
to construct Jacobian matrix. In real practice, it is easier. But because it only
can obtain matrix and solution vector’s product, we can only use iteration method
to solve the equation set. Its disadvantage is very time consuming and difference
method is still not accurate, sometimes it leads to convergence problem. Generally
when new algorithm is proven to be effective, we can use manual code to calculate
Jacobian matrix more accurately, so that to increase the speed.

9.14.5 DDM equation set accurate convergence criterion
Non linear equation set f (x) = 0’s criterion has two illustration method: absolute
convergence and relative convergence. Absolute convergence is f (x)’s mode value
less than a certain value.And relative convergence means the solutions x between
two steps are less than certain fixed value εr:

‖xk+1 − xk ‖

‖xk ‖
< εr (9.219)

These two convergence criterions are all used in practice. When semiconductor
outside bias is relatively low, the current through it is less, minority carrier’s
quantity has almost no contribution to current value. Now adopting absolute
convergence criterion is suitable. If we force minority carrier’s relative variation
less than certain value, we need more iterations, or maybe the machine accuracy
will affect so that it can not be reached. But when inject current is big, because
numerical error leads to current continuous equation’s absolute convergence dif-
ficult to meet, relative error is not related to current. Now relative convergence
condition is more useful. When we do forward IV curve calculation for diode, we
can find that low bias GSS report is absolute converge, after going into conduc-
tion region GSS reports relative convergence. GSS software request drift diffusion
equation absolute convergence criterion:

Equation type Convergence Criterion (2-Norm)
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Poisson Equation 10−29C/µm

Electron and Hole continuous equation 5 × 10−18A/µm

Thermal conduction equation 10−11W/µm

Electron and hole’s energy balance equationąą 10−18W/µm

Electrode boundary condition’s outside circuit equation 10−9V

Table 9.1: Absolute convergence criterion

For relative convergence request is all variables 2-Norm two steps iterations’ rel-
ative variation εr less than 10−5, simultaneously with the calculation accuracy,
equation set must satisfy relax 4 order’s absolute criterion. When either abso-
lute convergence or relative convergence is met, GSS consider Newton iteration is
converged.

9.15 Linear solver: Krylov Subspace Method
Non-linear iteration’s every step needs to solve a linear equation set, which con-
sume a lot to time during GSS solving. Linear equation set’s solving method has
direct method (LU decomposition). Fix point iteration algorithm (Gauss-Seidel
iteration, super relax iteration and so on) and Krylov subspace iteration method
(conjugate gradients class, minimum residual class).

Semiconductor device model equation set discretion formed coefficient matrix is
sparse not band shape. LU decomposition can not make use of it. Calculation is
at O(N3) level. Fix point iteration algorithm converges very slowly. Currently it
is not recommended to use. Krylov subspace’s algorithm only asks matrix vector
to product, for this type of problem, calculation load is at O(KMN) level, where
K is iteration order, normally tens of iteration will lead to convergence. M is
matrix’s bandwidth. Between 18 ∼ 24. From here we know Krylov type algo-
rithm can decrease the computation speed to the extreme. For linear equation
set solving, there are two problems need to be balanced: first is matrix condition
number, second is floating calculation cutting error. Big condition number will
lead to LU algorithm fail and increase Krylov type algorithm’s iteration num-
ber. Through variable scaling, put most of the carrier’s concentration around 1
will decrease condition number, but because semiconductor device electron-hole
product is a constant, this will lead to minority carrier’s absolute value turns
to be smaller, which leads to minority carrier concentration sensitive to floating
calculation cutting error. So variable’s scaling needs to be controlled in certain
scope. Generally, drift diffusion model’s linear equation set first choose minimal
residual type’s Transport Free Quasi-Minimal Residual (TFQMR) and General-
ized Minimal Residual (GMRES) method. Their solving convergence process is
smoother. Conjugate Gradient Squared method (CGS), Bi-Conjugate Gradient
(BICG), Bi-Conjugate Gradient Stabilized (BCGS) and etc.’s convergence speed
is fast. But without minimize the residual, convergence process is not reasonable,
and has strong vibration. Calculation process density’s middel value can be neg-
ative. Drift diffusion model although is resistant to negative density, it still needs
additional process. When problem scale is relatively small (less than 1000 nodes),
we can select LU method. Current commercial software, Medici integrates LU and
CGS method, Dessis adopts LU and TFQMR method. GSS internal linear solver
PETSC[62] includes LU method and almost all the Krylov subspace methods for
users to choose.
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9.15.1 Conjugate direction method
Conjugate direction method is conjugate gradients type method’s basement. We
are going to introduce it in this chapter. More details can be referred to [?][?].

Assume linear equation set is

Ax = f (9.220)

where A ∈ Rn,n, f ∈ Rn, A symmetric and normal. In order to further illustrate the
problem, first we introduce vector conjugate regarding matrix concept.

Given a symmetrical normal matrix B, called any two non-zero vector x, y are
regarding matrix B conjugate (or B normal cross), if

xT By = 0 (9.221)

Now assume for formulae Equation (9.220)’s matrix A, there is n non zero vector
p1, p2, · · · , pn, satisfying

(pi, Ap j) = 0, ∀i, j, i , j (9.222)

then p1, p2, · · · , pn regarding A normal cross or A conjugate. Obviously these n
non zero vector is linear non correlated. So if x∗ is equation Equation (9.220)’s
solution, x0 is any vector, x∗ − x0 can be linear combination of these pi.

x∗ − x0 =
n∑

k=1

αk pk (9.223)

where αk are constant. Equation’s both sides time A, we have

f − Ax0 = A(x∗ − x0) =
n∑
1

αkApk (9.224)

Let r0 = f − Ax0, do inner product for r0 and pk, together with Equation (9.222),
we have

αk =
(r0, pk)

(Apk, pk)
, k = 1, 2, · · · , n (9.225)

If

xk = x0 +
k∑

i=1

αi pi, k = 1, 2, · · · , n (9.226)

then

xk = xk−1 + αk pk, k = 1, 2, · · · , n (9.227)

From Equation (9.227) we know, if we can find n normal cross vector regarding A,
p1, p2, · · · , pn, then select a initial point x0, we can start from Equation (9.227)’s
iteration to obtain equation set Equation (9.220)’s solution. Where αk is given by
Equation (9.225). Assume we don’t consider iteration process’ cutting error, after
n step’s iteration we can have the accurate solution.

The following problem is how to fix n normal cross vector p1, p2, · · · , pn of A.
According to Gram-Schmidt normal cross method, For r0 we use the following
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deduction, which can lead to A normal cross n vectors.

p1 = r0

pk+1 = Apk −

k∑
i=1

βi,k pi

βi,k =
(A2pk, pi)
(Api, pi)

(9.228)

Consider Equation (9.225)-Equation (9.228) we have the conjugate direction
method’s step below:

Step1: initialization

r0 = f − Ax0 p1 = r0 (9.229)

Step2: k = 1, · · · , n

αk =
(r0, pk)

(Apk, pk)
xk = xk−1 + αk pk

βi,k =
(A2pk, pi)
(Api, pi)

, i = 1, 2, · · · , k

pk+1 = Apk −

k∑
i=1

βi,k pi

(9.230)

[?] gives expand subspace theory. From this theory we can directly visualize
conjugate direction method. We can prove that solving linear equation set problem
is similar as solving target function.

J(x) =
1
2

xT Ax − f T x (9.231)

minimum value problem.

Expand subspace theory let x0 to be randomly selected initial point, p1, p2, · · · , pn

is non zero conjugate A vector. If solution series xk is generated from conjugate
direction method Equation (9.229) Equation (9.230), then xk is at line xk−1 +αk pk

and line group x0 + S pan{p1, p2, · · · , pk} direction, leading minim function J(x)
value.

Expand subspace theory shows conjugate method’s every iteration step finds
higher dimensions minimum point. Then obviously after calculate n iterations,
we find function J(x)’s minimum point at Rn. Figure 9.22 shows conjugate direc-
tion method at three dimension space’s searching process. First step start from
x0, through p1 direction search and find minimum point x1. Second step, from x1,
through p2 direction search to have minimum point of p1, p2 fixed plane. Third
step, starting from x2, through p3 direction search to have the minimum point
from p1, p2, p3 fixed plane.

9.15.2 Conjugate gradient method
Conjugate gradients method is based on conjugate direction method. The differ-
ence from conjugate direction method is n conjugate direction’s fixing method is
different. In conjugate direction method, conjugate direction is predefined. Apply
Gram-Schmidt normal cross method, in conjugate gradients method, conjugate
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Figure 9.22: Conjugate direction method searching illustration

direction vector’s update uses every iteration’s gradients vector. In detail in con-
jugate gradients algorithm, conjugate direction vector’s update formulae is

pk+1 = rk − βk+1pk (9.232)

where rk = f − Axk. As shown in figure 9.22, p2 is fixed by r1 and p1, p3 is fixed
by r2 and p2.

Conjugate gradients method’s algorithm step is shown below:

Step 1: initialization

r0 = f − Ax0 p1 = r0 (9.233)

Step 2: k = 1, 2, · · · ,

αk =
(rk, pk)

(Apk, pk)
xk = xk−1 + αk pk

rk = b − Axk

βk+1 =
(Apk, rk)
(Apk, pk)

pk+1 = rk − βk+1pk

(9.234)

When linear equation set coefficient matrix’s condition number is relatively big,
conjugate gradients algorithm’s convergence speed is very slow. In order to in-
crease the convergence speed, during solving equation, we need to treat the original
equation. This treatment method is generally called preprocessing technique.

Preprocessing’s basic concept is to transfer the original equation to a equal equa-
tion set.

Ãx = f̃ (9.235)
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And equation set Equation (9.235)’s coefficient matrix is the biggest, minimum
feature value is far less than original equation’s corresponding part, so that it can
accelerate conjugate gradients algorithm convergence. Normally preprocessing
technique has poly nominal preprocessing and incomplete factor decomposition
method. Here we introduce incomplete factor decomposition method mainly.

Incomplete factor decomposition method’s starting point is to select a matrix M,
which is very close to A−1, put the original equation equal to

MAx = M f (9.236)

The simplest method is to select M as A’s diagonal part’s reverse. And mark
M1/2 = diag[1/

√
a11, 1/

√
a22, · · · , 1/

√
ann]čň Write Equation (9.236)as

Ãx̃ = f̃ (9.237)

where Ã = M1/2AM1/2, x̃ = M−1/2x, f̃ = M1/2 f . After using conjugate gradients
method to solve x̃, it is easy to obtain x. For a big type of matrix from par-
tial differential equation discretion, the previous method can really decrease A’s
condition number.

9.15.3 Double conjugate gradient method
In previous introduced conjugate direction method algorithm, we need linear equa-
tion set coefficient matrix A to be symmetrical and normal. Double conjugate
gradient method is suitable for coefficient matrix A not as normal matrix. This
method’s every step has two searching directions p, p̄, which are conjugate to A
and satisfying

p̄T
i Ap j = pT

i Ap̄ j = 0, i , j

r̄T
i r j = rT

i p̄ j, i , j

r̄T
i p j = rT p̄T

j , j < i

(9.238)

Double conjugate gradients method’s algorithm step is given below:

Step1: initialization

p0 = r0 p̄0 = r̄0 (9.239)

Step 2čžk = 1, 2, · · · ,

αk =
r̄T

k rk

(p̄T
k Apk)

rk+1 = rk − αkApk

r̄k+1 = r̄k − αkAT p̄k

βk =
r̄T

k+1rk+1

r̄T
k rk

pk+1 = rk+1 + βk pk

p̄k+1 = r̄k+1 + βk p̄k

xk+1 = xk + αk pk

x̄k+1 = x̄k + αk p̄k

(9.240)

Conjugate gradients method is not suitable for non symmetrical system. This
is because we can not make every step’s residual vector cross normal. Double
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conjugate method adopts another method, by using two crossed series to replace
cross normal’s residual vector. The scarification is that it may not provide the
minimum value.

In real practice, double conjugate gradients method convergence process can be
non stable. And even leads to breakdown. This condition can use look first strat-
egy to solve. This method will lead to algorithm realization difficulty. Breakdown
problem can also adopt other brutal method to solve, such as GMRES method.

9.15.4 GMRES
In real engineering problem, linear equation set’s coefficient matrix is not sym-
metrical and normal. They are structured sparse matrix. Solving these equations
is the focus of current research. There are several algorithms already. But theo-
cratically every algorithm has shortcoming. Now we introduce general minimum
residual method’s basic knowledge. In GMRES we need to use Arnoldi process,
so we give arnoldi process first.

For any given vector r0, mark Km = S pan{r0, Ar0, · · · , Am−1r0}, Arnoldi process in
fact is to construct space Km’s normal cross base procedure.

Arnoldi process

1. define v1 = v/ ‖ v ‖2.

2.

f or : j = 1, 2, · · · ,m
w = Av j

hi, j = vT
i w, w = w − hi, jvi, i = 1, 2, · · · , j

do{

h j+1,i =‖ w ‖2
}while(h j+1,i , 0)
v j+1 = w/h j+1, j

end

(9.241)

define matrix Vm = [v1, v2, · · · , vm]čňmatrix Hm is

Hm =



h11 h12 · · · h1,m−1 h1m

h21 h22 · · · h2,m−1 h2m

0 h32 · · · h3,m−1 h3m

· · · · · · · · · · · · · · ·

0 · · · · · · hm,m−1 hmm


(9.242)

H̄m =

 Hm

hm+1,meT
m

 (9.243)

where eT
m = (0, 0, · · · , 1).

GMRES algorithm step is shown below:

Step 1: initialization

choose x0 ∈ Rn and calculate

r0 = b − Ax0 v1 = r0/ ‖ r0 ‖ (9.244)
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Step 2: űÔÓÚ j = 1, 2, · · · , k, calculate until satisfying

Using Arnoldi process to obtain vi, i = 1, 2, · · · , k

step 3: solving least square problem

min
y∈Rn
‖ βe1 − H̄ky ‖ (9.245)

obtain’s result isyk.

Step 4: Calculatexk = x0 + Vkyk.

In GMRES method, how to solve minimum ‖ βe1 − H̄ky ‖ is a key question, he
detail method can be referred to[?]ąč

In fact, it is difficult to compare GMRES and BICG. GMRES method’s minimized
residual, but calculation load is big, which needs big memory size. BICG method
does not minimize residual, but its accuracy is similar as GMRES. BICG method
needs to solve twice of matrix vector product, which costs less memory, but its
stability is not as good as GMRES.
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Chapter 10 Functional Extension of
GSS

10.1 AC Small Signal Model
Besides basic steady-state and transient simulation functions, GSS also supports
small signal AC sweep as the post processing after a steady-state simulation. In
real application, small signal AC sweep is used to evaluate the band width of
amplifier, cut frequency of filter and so on.

Since small signal AC sweep is the post processing of the steady-state simulation,
user should first get the status of semiconductor device under certain DC bias
before input the small sine signal. The typical amplitude of the small signal
is 0.0026 V, so that we can consider the status of semiconductor device is not
significantly changed from DC situation. By using Taylor expansion, the effect of
the small signal is linearized and solved. The detail procedure is given below.

Suppose we bias the electrode as:

V = V0 + Ṽe jωt (10.1)

where V0 is the biased DC voltage, Ṽ is the amplitude of the small sine signal, ω is
the angular frequency of this signal. The DC calculation result satisfies following
semiconductor equations:

Fψ (ψ, n, p) = ∇ · ε∇ψ+ q (p − n + ND − NA) = 0 (10.2)

Fn (ψ, n, p) =
1
q
∇ · Jn − U =

∂n
∂t

= 0 (10.3)

Fp (ψ, n, p) = −
1
q
∇ · Jp − U =

∂p
∂t

= 0 (10.4)

and AC small signal’s solution can be written as

ψi = ψi0 + ψ̃ie jωt (10.5)
ni = ni0 + ñie jωt (10.6)
pi = pi0 + p̃ie jωt (10.7)

where ψi0, ni0 and pi0 are mesh point i’s DC result. And ψ̃, ñi and p̃i are corre-
sponding AC signal’s value. Generally speaking, they are all complex numbers.
Substitute (10.5)-(10.7) into semiconductor basic equations. Based on small signal
approximation, expand Taylor expansion to the first order, the three semiconduc-
tor equations has the following expression:

Fψ (ψ, n, p) = Fψ (ψ0, n0, p0) +
∂Fψ
∂ψ

ψ̃e jωt +
∂Fψ
∂n

ñe jωt +
∂Fψ
∂p

p̃e jωt = 0 (10.8)

Fn (ψ, n, p) = Fn (ψ0, n0, p0) +
∂Fn

∂ψ
ψ̃e jωt +

∂Fn

∂n
ñe jωt +

∂Fn

∂p
p̃e jωt = jωñe jωt(10.9)

Fp (ψ, n, p) = Fp (ψ0, n0, p0) +
∂Fp

∂ψ
ψ̃e jωt +

∂Fp

∂n
ñe jωt +

∂Fp

∂p
p̃e jωt = jω p̃e jωt(10.10)
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We notice F (ψ0, n0, p0) = 0 satisfies DC solution, so we can obtain the linear
equations about AC small signal at semiconductor region:

∂Fψ
∂ψ

∂Fψ
∂n

∂Fψ
∂p

∂Fn

∂ψ

∂Fn

∂n
− jω

∂Fn

∂p
∂Fp

∂ψ

∂Fp

∂n
∂Fp

∂p
− jω




ψ̃

ñ

p̃

 =


0

0

0

 (10.11)

For the electrode, the following equations should be satisfied:
ψ̃ = P̃

ñ = 0

p̃ = 0

(10.12)

where P̃ is the potential at the electrode. The relationship of potential P̃ and
application voltage Ṽ is decided by the electrode. GSS’s default electrode circuit
diagram is shown in Figure (10.1). Accordingly we need another equation to

Figure 10.1: The electrode in AC sweep

describe the lumped elements:

Ṽ − (Z1Y2 + 1) P̃ = Z1 Ĩ (10.13)

where Z1 = R+ jωL, Y2 = jωC are the lumped impedance and conductance of the
electrode. Ĩ is the current injected into the electrode.

The matrix of linear equations (10.11) is the Jacobian matrix for the DC simu-
lation minus jω for main diagonal. If we have a linear solver supports complex
number, the problem is solved. However if we have only have a real linear solver,
another step is required. Write (10.11) as real format: J −D

D J


 XR

XI

 =

 0

0

 (10.14)

where J is the Jacobian matrix in DC condition, XR and XI are AC solution’s real
and imagine part. D is a diagonal matrix

D =


0

−ω

−ω

 (10.15)

In GSS code, AC solver shares the same Jacobian matrix with DDML1E solver,
accordingly AC solver’s calling must follow DDML1E steady-state solving. Each
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solving of Equation (10.14), we can obtain semiconductor’s respondence to a sine
signal for a certain frequency. In the application we may need to sweep the
frequency domain characteristics of the device for a wide bandwidth. From (10.15)
we know (10.14)’s ω is not at the main diagonal, Accordingly when ω is high,
matrix will lose diagonal domination, condition number becomes worse obviously.
Generally, when sweep frequency is close to cutoff frequency, convergence turns
to be difficult [63].

10.2 Circuit Level Mixed-type Simulation
GSS is a device level simulation software, which can only deal with single tran-
sistor. Since version 0.45, GSS designs an interface to SPICE software to expand
GSS’s application in circuit simulation area. In real application, the circuit sim-
ulation is under the control of SPICE, the less important devices are simulated
directly by SPICE compact model, while GSS is used to simulate some key devices
for accurate numerical result. When multiple numerical devices in circuit are re-
quired to be simulated at device level, SPICE can control many GSS processes at
the same time, with each simulates one device’s IV characteristic.

SPICE software is originally developed by UC Berkeley with Fortran language in
1972. The first version SPICE2G is published to public domain in 19751. In 1985,
Berkeley rewrote SPICE by C language, the final version SPICE3f5 is published in
1994. Afterwards, Berkeley stopped the development. Today, SPICE has became
the defacto industry standard for circuit simulation. We can find many commercial
versions of SPICE all over the world, which little difference with each other.

Because the previous SPICE has dozens years history, some of the codes are not
compatible to modern compiler. SourceForge supports NGSPICE project, which
is to keep SPICE up-to-date. The NGSPICE developers corrected many bugs
of SPICE3F5 and added some new features [64]. At the same time, SourceForge
supports GNUCap (GNU Circuit Analysis Package) proejct, which is a C++ soft-
ware to do advance digital and analog mix simulation. Its circuit component is
compatible with SPICE model and simultaneously provides good characteristics.
GSS currently can work with NGSPICE for circuit-device mixed mode simulation.
In the near future, GSS might be accepted by GNUCap as a plug-in for semicon-
ductor device simulation. In mixed mode development, a lot of help obtained from
NGSPICE/GNUCap development team, we appreciate them here.

Now we first introduce how to build circuit equations. And based on that, we will
give the core arithmetic of NGSPICE. In the end, we will introduce the interface
of GSS to NGSPICE and the necessarily changes at GSS end.

10.2.1 Circuit nodal analyze method
Currently commercial version of SPICE can analyze circuit with thousands of
components. People are always amazed by its power. Here we are going to discuss
the basic rule of this powerful software, which is fairly simple.

All circuit analysis course will mention Kirchhoff’s two principles: nodal current
conservation law and branch voltage conservation law. In practice, using node to
describe circuit’s topology structure is more easier than using the directed loop.

SPICE software uses nodal current conservation law to construct circuit equa-
tion. Each electrical component is considered as a branch of the circuit, with its
endpoint connected to another branch at circuit node. The circuit equation is

1 It is recognized as the first open source software.

GeniEDA Corp. 151 GSS User’s Guide



10.2 Circuit Level Mixed-type Simulation Chapter10. Functional Extension of GSS

constructed by branch current voltage characteristics. Since the basic indepen-
dent variable is the voltage for each node, this method is called nodal analysis
method [65].

Here uses a simple circuit on Figure (10.2) for example: Based on Kirchhoff nodal

Figure 10.2: Node analysis method circuit diagram

current conservation law, the flow in and flow out current of each node should be
the same. We can obtain equations for node 1 and node 2:

− Is +
V1

R1
+

V1 − V2

R2
= 0 (10.16)

V2 − V1

R2
+

V2

R3
= 0 (10.17)

For simplification, we transform the equation to matrix format:
1

R1
+

1
R2

−
1

R2

−
1

R2

1
R2

+
1

R3


 V1

V2

 =

 Is

0

 (10.18)

Where matrix at left hand side is called circuit’s conductance matrix since every
item has the dimension as conductance. The current source in the circuit is placed
at right hand side. By solving this matrix, we can obtain the voltage of each node
in the circuit.

Computer can build conductance matrix in an automatical way. Computer will
scan each device in the circuit. When it scans the current source Is between node 1
and ground, it will evaluate current scaler at node 1 on the right side of equation.
When it scans resister 2, assuming its two nodes are R+ and R−, the relationship
of current and the modal voltage can be expressed as:

IR+ =
VR+ − VR−

R2
(10.19)

IR− =
VR− − VR+

R2
(10.20)

As a result, the conductance matrix of resister is:
∂IR+

∂VR+

∂IR+

∂VR−
∂IR−

∂VR+

∂IR−

∂VR−

 =


1

R2
−

1
R2

−
1

R2

1
R2

 (10.21)

After we have built conductance matrix of R2, computer will insert it into the
circuit conductance matrix (the matrix at left hand side of Equation (10.18)) by
the global node index of R+ and R−, which is similar as finite element analysis’
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stiffness matrix building. Scanning resistor 1 and resister 3 are disposed com-
paratively. However, they both have one endpoint grounded. Since the ground
potential is consistently 0 as a fixed boundary condition of the circuit, accordingly

we only need to calculate
∂I
∂V

for non-grounded endpoint. After scanning all the
devices, the circuit equation (10.18) is constructed.

For one device with N endpoints, each node’s current can be written as:

Ii = I (V1,V2 · · ·VN) (10.22)

Then the transfer matrix is

∂I1
∂V1

∂I1
∂V2
· · ·

∂I1
∂VN

∂I2
∂V1

∂I2
∂V2
· · ·

∂I2
∂VN

...

∂IN
∂V1

∂IN
∂V2
· · ·

∂IN
∂VN


(10.23)

For any circuit including resistor and current sources (without voltage sources),
theocratically by following the method above: each resistor’s conductance matrix
inserts into circuit conductance matrix’ corresponding position, and put the cur-
rent source to corresponding node equation’s right hand side, we can construct
the circuit equation. The work after is to solve a linear system.

Nodal analysis method has some limitation, which can not describe a voltage
source. Because voltage source’s current has no relationship with its voltage. Old
version of SPICE gives every voltage source a small resister around 1 × 10−12 Ω
and force the voltage and current through the resister has certain relationship.
New version of SPICE adopts modified nodal analysis method, which allows each
voltage source has one more current variable.

Real circuit will not only contain resistor. Capacitor and inductor can be neglected
in static calculation. But they are necessary parts for transient circuit. Capacitor
and inductor’s current voltage relationship includes time derivative. We need
certain technique to build the conductance matrix. In reality, the method below
can be used for any time derivative related devices.

Capacitor’s current voltage relationship:

IC = C
dVC

dt
(10.24)

The formulae above is a difference equation, SPICE use numerical integration
to solve the formulae above. The below is 1st order and 2nd order numerical
integration.

In+1
C =

C
∆tn Vn+1

C −
C

∆tn Vn
C (10.25)

In+1
C =

2C
∆tn Vn+1

C −
2C
∆tn Vn

C − In
C (10.26)

Real SPICE code even provides higher order accurate numerical integration
method. Their general format is :

In+1
C =

C
b−1∆tn︸   ︷︷   ︸

geq

Vn+1
C −

a0 ·C
b−1∆tn Vn

C −
b0

b−1
In
C −

b1

b−1
In−1
C − . . . −

bk

b−1
In−k
C︸                                                           ︷︷                                                           ︸

Ieq

(10.27)

So capacitor’s equal circuit diagram is shown (10.3), current voltage relationship
can be written as:

In+1
C = geq · Vn+1

C + Ieq (10.28)
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Or according to nodal analysis method, written in matrix method : +geq −geq

−geq +geq

 ·
 Vn+1

1

Vn+1
2

 =

 −Ieq

+Ieq

 (10.29)

Inductor device’s current voltage relationship:

VL = L
dIL

dt
(10.30)

In SPICE, inductor can also be illustrated by numerical integration:

Vn+1
L =

L
b−1∆tn︸   ︷︷   ︸

req

In+1
L −

a0L
b−1∆tn In

L −
b0

b−1
Vn

L −
b1

b−1
Vn−1

L − . . . −
bk

b−1
Vn−k

L︸                                                            ︷︷                                                            ︸
Veq

(10.31)

Inductor’s equal circuit diagram is shown in figure (10.4), which is similar as an
voltage source with inner resistor. The inductor’s current voltage relationship can
be written as:

Vn+1
L = req · In+1

L + Veq (10.32)

Because the existence of voltage source, we have to use voltage source’s current
as variable. Inductor’s matrix format in modified nodal method is :

0 0 +1

0 0 −1

+1 −1 −req

 ·


Vn+1
1

Vn+1
2

In+1
L

 =


0

0

Veq

 (10.33)

Figure 10.3: Capacitor equal circuit
diagram

Figure 10.4: Inductor’s equal circuit
diagram

Generally, current voltage relationship for complicate device is nonlinear. The
typical example is a semiconductor diode. The previous linear devices can be
treated as the special case for nonlinear devices. We start from more general
conditions, deduct circuit solution method. Assume the circuit equation we need
to solve is:

I (V) = 0 (10.34)

Where, V represents the node’s voltage scaler, I represents for each node’s current
value. If circuit has N nodes, V and I all have N factors. By using Newton iteration
solving the formulae above, the iteration process is :

Vn+1 = Vn − J−1 (Vn) I (Vn) (10.35)
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Where, n is the iteration serial number

J (V) =


∂I1
∂V1

∂I1
∂V2
· · ·

∂I1
∂VN

· · · · · ·

∂IN
∂V1

∂IN
∂V2
· · ·

∂IN
∂VN


In each iteration, current voltage scaler Vn is known, accordingly the next step’s
voltage scaler Vn+1 can be obtain from (10.35).

SPICE solves the formulae (10.35)’s transformation, we call Jacobian matrix J as
conductance matrix G. Formulae (10.35) can be written as:

GnVn+1 = GnVn − In (10.36)

Since conductance matrix G is corresponding to the linear conductance when
the voltage of non-linear device is at Vn. The right hand side’s GnVn − In is
corresponding to equal current source when non linear device voltage is Vn. SPICE
needs to obtain each device’s liner conductance and equal current source before
each iteration. This part information is given by device model. (10.36)’s iteration
is end until it is converges.

10.2.2 GSS’s circuit mix mode module
Device and circuit mix mode simulation can adopt two method. The first method
is to mix the circuit equation and semiconductor equation together to forma a
equation set, which is called couping method [66]. The second method is two
level iteration method: The outer part is circuit equation iteration, and in each
iteration, the device simulation unit are given the node voltage to iterate till
convergence. And then calculate the device’s transfer matrix and equal current
source feedback to outer circuit [67]. Coupling method’s total iteration number is
less, but its biggest problem is that the number of device is limited. Because all
the equation needs to be solved together. For example 10 semiconductor devices,
each semiconductor device has 3000 control equation. Then the matrix turns to be
huge. The matrix iteration calculation follows O(n2) increase. When the matrix
is very big, each iteration’s calculation is very big. Generally when problem is
small, for example only one semiconductor device need to be simulated, coupling
method has its advantage. Two level iteration method separate problems, which
is suitable for large scale problem solution. Although it takes more iterations,
it avoids to deal with huge matrix, which decrease the computation for each it-
eration. Simultaneously, second order iteration method can be used to parallel
computation, each numerical device can take a single CPU, SPICE only needs to
wait for the slowest device to be calculated for the circuit iteration.

GSS and NGSPICE adopts second layer iteration method. In reality, I introduced
a NGSPICE numerical device NDEV. Its is basically a TCP/IP network interface.
Shown in figure (10.5), it sends node voltage information to GSS. After GSS
receives the signal and calculated the transfer matrix and equal current source, it
will send back to NDEV [68][69].

In order to be suitable for SPICE work, GSS needs to provide device’s transfer
matrix and equal current information. From (10.36) we know, the most important

is how to deal with device transfer matrix G =
∂i
∂V

. A simple thought is to use
the finite difference approximation, for transfer matrix’s each factor

Geq =
∂i
∂V
≈

i (V0 + ∆V) − i (V0)
∆V

(10.37)
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Figure 10.5: Mix mode simulation layer structure

This method although is very easy to realize, when i (V0 + ∆V) and i (V0) are very
close, the error is very big. And it is also a problem to fix ∆V.

Based on analytical method to fix G needs a lot of efforts, but it is more accurate.
So it is still worthy [57][70]. Put the GSS solved semiconductor equation set as
the following format:

F (w,V) = 0 (10.38)

where w represents semiconductor basic variable, including potential ψ, electron
density n, hole density p and temperature T ; V illustrates the outer voltage at
certain electrode. Noticing semiconductor basic variable w is dependent on outer
voltage, accordingly we can write as w = w (V). Device electrode’s current can
be written as i = I (w), accordingly electrode current does not show dependency
to the outer voltage. Adopting series derivative solving method we can explain
Geq as

Geq =
∂i
∂V

=
∂I
∂w
·
∂w
∂V

(10.39)

Because electrode current’s expression is known,
∂I
∂w

can be deducted directly. In

order to obtain
∂w
∂V

, derivating

Jw
∂w
∂V

+
∂F
∂V

= 0 (10.40)

Where Jw is semiconductor control equation set’s Jacobian matrix, at GSS

iteration we already obtained.
∂F
∂V

can be obtained through device electrode
boundary control equation’s symbol differential. Accordingly thourhg solving the

prevoius formulae’s linear equation set we can obtain
∂w
∂V

. After obtaining
∂I
∂w

and
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∂w
∂V

, we can solve Geq through (10.39). For multiple electrodes device, transfer
matrix has following format:

G =


∂I1
∂w

∂w
∂V1

∂I1
∂w

∂w
∂V2

· · ·
∂I1
∂w

∂w
∂VN

· · · · · ·

∂IN

∂w
∂w
∂V1

∂IN

∂w
∂w
∂V2

· · ·
∂IN

∂w
∂w
∂VN

 (10.41)

After obtaining transfer matrix, the equal current cource can be deducted from
(10.36).

During the above deduction, GSS has another benefit. The GSS always use the
previous step’s solution for the next step’s iteration initial value. But after obtain-

ing
∂w
∂V

, the next iteration initial value can be used with better approximation:

wn+1 = w (Vn) +
(
∂w
∂V

)n

∆V (10.42)

This will help for convergence.

10.3 Device IV curve’s automatic scan
Calculating device’s IV curve normally adopts voltage scan’s method: gradu-
ally increasing electrode voltage, for every voltage value calculating the current
through the device, and then draw the IV curve. This method is easy to be con-
sidered, but in real application there are problems. Mentioned in "??", on page
??, at diode’s forward IV curve diagram (??)’s high partial voltage part, current
and voltage is exponential related. A small increase in voltage leads to big cur-
rent variation, which means that it is difficult to converge by using the previous
voltage’s solution. "??", on page ?? snapback phenomenon shows multiple current
value function at the same voltage. Voltage scan will not converge.

In order to solve the two problems above, we can scan the current. For diode’s
forward conduction, increase big current only means a small variation of voltage.
Then Newton iteration’s initial value is much better. For GGMOS’s snapback
point, current is still single value function, which removes a lot of of multiple
solution problems.

In conclusion, when IV curve is smooth (parallel to voltage axis), it is suitable to
use voltage scan; for IV curve is sharp (parallel to current line), it is suitable for
current scan. Device IV curve automatic scan function can shift from this two,
which avoids human interference [71].

Device IV curve automatic scan adopts circuit structure shown in (10.6). One
voltage source is linked to device port which needs to be scanned through a tunable
resistor. From circuit analysis we know, one voltage source with inner resister R
is a line with slope K = 1/R, called loading line. When R→ 0, slope K→ ∞
represents loading line is perpendicular to voltage axis, similar to ideal voltage
source situation, shown in (10.7)(a) line; When R→ ∞, slope K→ 0 represents
loading line is perpendicular to current axis, similar as ideal current source, shown
in figure (10.7) (b) line. Accordingly by tuning R 2 we can make loading line be
perpendicular to device IV curve, shown in figure (10.7) (c) line.

Device IV curve automatic scan algorithm secure each scan point, loading line and
IV line perpendicular state. The algorithm is shown in figure (10.8). At P pooint,
2 allow negative resistance
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Figure 10.6: Device IV curve automatic
scan circuit structure

Figure 10.7: Device’s IV curve and
loading line

GSS calculates device current node’s I = I(V) and IV curve’s slope K = ∂I/∂V.
Assume loading line’s resistance RLoad = −1/K, perpendicular to current IV line.
Then changing outer source voltage Vext, similar as moving loading line through
parallel to voltage axis δVext. Assuming loading line and IV curve meet at Q
point, GSS calculates Q point’s position, simultaneously calculate Q point’s IV
curve’s slope. Then evaluate the loading line resistance again, like rotating an
angle at the Q point to make it perpendicular to the IV curve. Now the loading
line and voltage axis’s meeting point turns to be Vnew

ext , which means after loading
line resistance change, outer voltage has to be set as Vnew

ext to let the loading line
and IV curve meet at Q point. Do the loop like the description above until we
finish the scanning of whole IV curve.

It is worthy to mention that at the snapback point voltage value’s step needs to
change sign. Figure (10.9) shows how to fix snapback point: after snapback point,
IV curve’s slope S1 and S2 have different sign. The product is negative; The line
T, connecting 1 and 2 points, has slope value bigger than S1’s slope absolute value.
Satisfying the previous two condition, we can judge the snapback point at the IV
curve, we need to change the step’s sign.

In the end I want to introduce the disadvantage of IV line automatic scan. Because
it needs to introduce an additional resistor ( The resistor is very big at high slope
IV curve), electrode with big resistor leads to more problem condition numbers,
accordingly IV curve automatic scan may lead to severe convergence problem.
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Figure 10.8: Device IV curve automatic scan process

Figure 10.9: Snapback point’s judgement
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